Download presentation
Presentation is loading. Please wait.
Published byBuddy Norman Modified over 9 years ago
1
Beyond ab initio modelling… Comparative and Boltzmann equilibrium Yann Ponty, CNRS/Ecole Polytechnique with invaluable help from Alain Denise, LRI/IGM, Université Paris-Sud M2 Bioinfo Paris-Saclay 2015-2016 1
2
Prediction by homology M2 Bioinfo Paris-Saclay 2015-20162 Data : several homologous RNA sequences. Output : a consensus structure for this set of sequences.
3
Prediction by Homology From sequence alignment 3M2 Bioinfo Paris-Saclay 2015-2016
4
Detecting covariations M2 Bioinfo Paris-Saclay 2015-20164 We start from a sequence alignment: GAGGACTGAGCTCAGTTAAAGTGCCTG AAGGGCCCCGCTGGGCAAAG--GCTG- AAGGGGTCGGCTGACCTAAAGTAGTTG GAGGGGTGAG-GCAUCTAAAGTGTTTG GAGGACTGTGCTCAGTTAAAGTGTTTG Look for sequence covariations
5
Detecting covariations M2 Bioinfo Paris-Saclay 2015-20165 We start from a sequence alignment: GAGGACTGAGCTCAGTTAAAGTGCCTG AAGGGCCCCGCTGGGCAAAG--GCTG AAGGGGTCGGCTGACCTAAAGTAGTTG GAGGGGTGAG-GCAUCTAAAGTGTTTG GAGGACTGTGCTCAGTTAAAGTGTTTG ( ) We search for sequence covariations, They come from compensatory mutations during the evolution
6
Detecting covariations M2 Bioinfo Paris-Saclay 2015-20166 We start from a sequence alignment: GAGGACTGAGCTCAGTTAAAGTGCCTG AAGGGCCCCGCTGGGCAAAG--GCTG AAGGGGTCGGCTGACCTAAAGTAGTTG GAGGGGTGAG-GCAUCTAAAGTGTTTG GAGGACTGTGCTCAGTTAAAGTGTTTG....((((....))))........... We search for sequence covariations They come from compensatory mutations during the evolution
7
Detecting covariations M2 Bioinfo Paris-Saclay 2015-20167 We start from a sequence alignment: GAGGACTGAGCTCAGTTAAAGTGCCTG AAGGGCCCCGCTGGGCAAAG--GCTG AAGGGGTCGGCTGACCTAAAGTAGTTG GAGGGGTGAG-GCAUCTAAAGTGTTTG GAGGACTGTGCTCAGTTAAAGTGTTTG....((((....))))........... Measure : mutual information between positions i and j : - ∑ Pr(i=a) Pr(j=b) log(Pr(i=a|j=b)) a,b where a and b are the different nucleotides.
8
Two softwares based on this approach M2 Bioinfo Paris-Saclay 2015-20168 RNA-alifold (Hofacker et al. 2000) http://rna.tbi.univie.ac.at/cgi-bin/RNAalifold.cgi RNAz (Washietl et al. 2005) http://rna.tbi.univie.ac.at/cgi-bin/RNAz.cgi
9
RNAalifold 9M2 Bioinfo Paris-Saclay 2015-2016
10
Application : tRNA Alanine >Artibeus_jamaicensis AAGGGCTTAGCTTAATTAAAGTAGTTGATTTGCATTCAGCAGCTGTAGGATAAAGTCTTGCAGTCCTTA >Balaenoptera_musculus GAGGATTTAGCTTAATTAAAGTGTTTGATTTGCATTCAATTGATGTAAGATATAGTCTTGCAGTCCTTA >Bos_taurus GAGGATTTAGCTTAATTAAAGTGGTTGATTTGCATTCAATTGATGTAAGGTGTAGTCTTGCAATCCTTA >Canis_familiaris GAGGGCTTAGCTTAATTAAAGTGTTTGATTTGCATTCAATTGATGTAAGATAGATTCTTGCAGCCCTTA >Ceratotherium_simum GAGGGTTTAGCTTAATTAAAGTGTTTGATTTGCATTCAGTTGATGTAAGATAGAGTCTTGCAGCCCTTA >Dasypus_novemcinctus GAGGACTTAGCTTAATTAAAGTGCCTGATTTGCGTTCAGGAGATGTGGGGCTAAATCTTGCAGTCCTTA >Equus_asinus AAGGGCTTAGCTTAATGAAAGTGTTTGATTTGCGTTCAATTGATGTGAGATAGAGTCTTGCAGTCCTTA >Erinaceus_europeus GAGGATTTAGCTTAAAAAAAGTGGTTGATTTGCATTCAATTGATATAGGAAATATAATCTTGTAATCCTTA >Felis_catus GAGGACTTAGCTTAATTAAAGTGTTTGATTTGCAATCAATTGATGTAAGATAGATTCTTGCAGTCCTTA >Hippopotamus_amphibius AGGGACTTAGCTTAATAAAAGCAGTTGAGTTGCATTCAATTGATGTGAGGTGCGGTCTTGCAGTCTCTA >Homo_sapiens AAGGGCTTAGCTTAATTAAAGTGGCTGATTTGCGTTCAGTTGATGCAGAGTGGGGTTTTGCAGTCCTTA 10M2 Bioinfo Paris-Saclay 2015-2016
11
Exercise M2 Bioinfo Paris-Saclay 2015-201611 1. Compute an alignment of the previous sequences, by using MAFFT: http://www.ebi.ac.uk/Tools/msa/mafft/ (do not forget to set the Nucleic Acid option) http://www.ebi.ac.uk/Tools/msa/mafft/ 2. Copy/paste the result in RNAalifold : http://rna.tbi.univie.ac.at/cgi-bin/RNAalifold.cgihttp://rna.tbi.univie.ac.at/cgi-bin/RNAalifold.cgi 3. Look at the result.
12
MAFFT alignment >Artibeus_jamaicensis AAGGGCTTAGCTTAATTAAAGTAGTTGATTTGCATTCAGCAGCTGTAGG--ATAAAGTCTTGCAGTCCTTA >Balaenoptera_musculus GAGGATTTAGCTTAATTAAAGTGTTTGATTTGCATTCAATTGATGTAAG--ATATAGTCTTGCAGTCCTTA >Bos_taurus GAGGATTTAGCTTAATTAAAGTGGTTGATTTGCATTCAATTGATGTAAG--GTGTAGTCTTGCAATCCTTA >Canis_familiaris GAGGGCTTAGCTTAATTAAAGTGTTTGATTTGCATTCAATTGATGTAAG--ATAGATTCTTGCAGCCCTTA >Ceratotherium_simum GAGGGTTTAGCTTAATTAAAGTGTTTGATTTGCATTCAGTTGATGTAAG--ATAGAGTCTTGCAGCCCTTA >Felis_catus GAGGACTTAGCTTAATTAAAGTGTTTGATTTGCAATCAATTGATGTAAG--ATAGATTCTTGCAGTCCTTA >Equus_asinus AAGGGCTTAGCTTAATGAAAGTGTTTGATTTGCGTTCAATTGATGTGAG--ATAGAGTCTTGCAGTCCTTA >Homo_sapiens AAGGGCTTAGCTTAATTAAAGTGGCTGATTTGCGTTCAGTTGATGCAGA--GTGGGGTTTTGCAGTCCTTA >Hippopotamus_amphibius AGGGACTTAGCTTAATAAAAGCAGTTGAGTTGCATTCAATTGATGTGAG--GTGCGGTCTTGCAGTCTCTA >Dasypus_novemcinctus GAGGACTTAGCTTAATTAAAGTGCCTGATTTGCGTTCAGGAGATGTGGG--GCTAAATCTTGCAGTCCTTA >Erinaceus_europeus GAGGATTTAGCTTAAAAAAAGTGGTTGATTTGCATTCAATTGATATAGGAAATATAATCTTGTAATCCTTA 12M2 Bioinfo Paris-Saclay 2015-2016
13
RNAalifold 13M2 Bioinfo Paris-Saclay 2015-2016
14
Application : tRNA H.sapiens >Homo_sapiensArg TGGTATATAGTTTAAACAAAACGAATGATTTCGACTCATTAAATTATGATAATCATATTTACCAA >Homo_sapiensAsn TAGATTGAAGCCAGTTGATTAGGGTGCTTAGCTGTTAACTAAGTGTTTGTGGGTTTAAGTCCCATTGGTCTAG >Homo_sapiensAsp AAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAATTATAGGCTAAATCCTATATATCTTA >Homo_sapiensCys AGCTCCGAGGTGATTTTCATATTGAATTGCAAATTCGAAGAAGCAGCTTCAAACCTGCCGGGGCTT >Homo_sapiensGln TAGGATGGGGTGTGATAGGTGGCACGGAGAATTTTGGATTCTCAGGGATGGGTTCGATTCTCATAGTCCTAG >Homo_sapiensGlu GTTCTTGTAGTTGAAATACAACGATGGTTTTTCATATCATTGGTCGTGGTTGTAGTCCGTGCGAGAATA >Homo_sapiensGly ACTCTTTTAGTATAAATAGTACCGTTAACTTCCAATTAACTAGTTTTGACAACATTCAAAAAAGAGTA >Homo_sapiensHis GTAAATATAGTTTAACCAAAACATCAGATTGTGAATCTGACAACAGAGGCTTACGACCCCTTATTTACC >Homo_sapiensIso AGAAATATGTCTGATAAAAGAGTTACTTTGATAGAGTAAATAATAGGAGCTTAAACCCCCTTATTTCTA >Homo_sapiensLeuCun ACTTTTAAAGGATAACAGCTATCCATTGGTCTTAGGCCCCAAAAATTTTGGTGCAACTCCAAATAAAAGTA 14M2 Bioinfo Paris-Saclay 2015-2016
15
Exercise M2 Bioinfo Paris-Saclay 2015-201615 The same as previously, but with these new sequences. 1. Compute an alignment of the previous sequences, by using ClustalW or ClustalO: http://www.ebi.ac.uk/Tools/msa/clustalw2/ (do not forget to put the « DNA » option) http://www.ebi.ac.uk/Tools/msa/clustalw2/ 2. Copy/paste the result in RNAalifold : http://rna.tbi.univie.ac.at/cgi-bin/RNAalifold.cgihttp://rna.tbi.univie.ac.at/cgi-bin/RNAalifold.cgi 3. Look at the result. What happened ? Why ?
16
MAFFT alignment >Homo_sapiensArg TGGTATATAGT---TTAAACAAAACGAATGATTTCGACTCATTAAAT---TATGATAA---TCATATTTACCAA >Homo_sapiensGly ACTCTTTTAGT---ATAAATAGTACCGTTAACTTCCAATTAACTAGT---TTTGACAACATTCAAAAAAGAGTA >Homo_sapiensHis GTAAATATAGT---TTAACCAAAACATCAGATTGTGAATCTGACAAC--AGAGGCTTACGACCCCTTATTTACC >Homo_sapiensIso AGAAATATGTC---TGATAAAAGAGTTACTTTGATAGAGTAAATAAT--AGGAGCTTAAACCCCCTTATTTCTA >Homo_sapiensGlu GTTCTTGTAGT---TGAAATACAACGATGGTTTTTCATATCATTGGT--CGTGGTTGTAGTCCGTGCGAGAATA >Homo_sapiensLeuCun ACTTTTAAAGG---ATAACAGCTATCCATTGGTCTTAGGCCCCAAAAATTTTGGTGCAACTCCAAATAAAAGTA >Homo_sapiensAsn TAGATTGAAGCCAGTTGATTAGGGTGCTTAGCTGTTAACTAAGTGTT-TGTGGGTTTAAGTCCCATTGGTCTAG >Homo_sapiensGln TAGGATGGGGTGTGATAGGTGGCACGGAGAATTTTGGATTCTCAGGG--ATGGGTTCGATTCTCATAGTCCTAG >Homo_sapiensCys AGCTCCGAGGT-----GATTTTCATATTGAATTGCAAATTCGAAGAA---GCAGCTTCAAACCTGCCGGGGCTT >Homo_sapiensAsp AAGGTATTAGA---AAAACCATTTCATAACTTTGTCAAAGTTAAATT---ATAGGCTAAATCCTATATATCTTA 16M2 Bioinfo Paris-Saclay 2015-2016
17
RNAalifold 17M2 Bioinfo Paris-Saclay 2015-2016 RNAalifold finds a common but much less conserved structure.
18
Prediction by Homology Simultaneous folding and alignment 18M2 Bioinfo Paris-Saclay 2015-2016
19
Problem specification Data : a set of sequences Output : a sequence alignment, and a common secondary structure. 19M2 Bioinfo Paris-Saclay 2015-2016
20
Approaches The reference approach: Sankoff’s algorithm (1985) Algorithmic approach: dynamic programming Complexity : n 3k for k sequences of length n There are several implementatons, herer are two of them (with constraints): Foldalign (Gorodkin, Heyer, Stormo 1997, Havgaard, Lyngso, Stormo, Gorodkin 2005). Dynalign (Mathews, Turner 2002) Heuristics based on this algorithm : LocaRNA (http://rna.informatik.uni- freiburg.de:8080/LocARNA.jsp).http://rna.informatik.uni- freiburg.de:8080/LocARNA.jsp 20M2 Bioinfo Paris-Saclay 2015-2016
21
Exercise M2 Bioinfo Paris-Saclay 2015-201621 1. Take the two previous sets of sequences (one after the other) and run LocARNA. http://rna.informatik.uni-freiburg.de:8080/LocARNA/Input.jsp Look at the results. http://rna.informatik.uni-freiburg.de:8080/LocARNA/Input.jsp 2. Consider the first set only. Run LocARNA with the first two sequences, then the first three, and so on. How many sequences do you need to get the right tRNA structure?
22
Sankoff’s algorithm in a few words : Data : a set of sequences Parameters : a score matrix, giving a score S ij,kl for each alignment of pairs of nucleotides. Output : a sequence alignment, and a common secondary structure. Method : dynamic programming. It is a bit complicated, so we will study a simplified version of the algorithm : Foldalign. Two sequences only No multiloop allowed in the secondary structure Simplified score matrix 22M2 Bioinfo Paris-Saclay 2015-2016
23
23M2 Bioinfo Paris-Saclay 2015-2016
24
Recurrence relation for Foldalign 24M2 Bioinfo Paris-Saclay 2015-2016
25
25M2 Bioinfo Paris-Saclay 2015-2016
26
26M2 Bioinfo Paris-Saclay 2015-2016
27
27M2 Bioinfo Paris-Saclay 2015-2016
28
28M2 Bioinfo Paris-Saclay 2015-2016
29
29M2 Bioinfo Paris-Saclay 2015-2016
30
30M2 Bioinfo Paris-Saclay 2015-2016
31
From energy minimization to Boltzmann equilibrium? M2 Bioinfo Paris-Saclay 2015-201631
32
Optimization methods can be overly sensitive to fluctuations of the energy model Example: Get RFAM seed alignment for D1-D4 domain of the Group II intron Extract A. capsulatum ( Acidobacterium_capsu.1 ) sequence Run RNAFold on sequence using default parameters Rerun RNAFold using latest energy parameters Denise Ponty - Tuto ARN - IGM@Seillac'1232 Stability (Turner 2004) RNA ACGAUCGCGA CUACGUGCAU CGCGGCACGA CUGCGAUCUG CAUCGGA... Stability (Turner 1999) <ε<ε
33
Probabilistic approaches in RNA folding RNA in silico paradigm shift: From single structure, minimal free-energy folding… … to ensemble approaches. …CAGUAGCCGAUCGCAGCUAGCGUA… Ensemble diversity? Structure likelihood? Evolutionary robustness? UnaFold, RNAFold, Sfold… M2 Bioinfo Paris-Saclay 2015-201633
34
Probabilistic approaches indicate uncertainty and suggest alternative conformations Example: >ENA|M10740|M10740.1 Saccharomyces cerevisiae Phe-tRNA. : Location:1..76 GCGGATTTAGCTCAGTTGGGAGAGCGCCAGACTGAAGATTTGGAGGTCCTGTGTTCGATCCACAGAATTCGCACCA M2 Bioinfo Paris-Saclay 2015-201634 Native structure RNAFold -p « dot-plot »
35
ij i+1j-1 i i+1 j j i j-1 i kk+1 j Nussinov’s algorithm (1978) 1. 2. 3. 4. Partition function algorithms can be adapted from non-ambiguous* DP scheme Is this decomposition ambiguous? * Ambiguous = Multiple ways to generate a structure 35M2 Bioinfo Paris-Saclay 2015-2016
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.