Download presentation
Presentation is loading. Please wait.
Published byHenry Malone Modified over 9 years ago
1
By Pushpita Biswas Under the guidance of Prof. S.Mukhopadhyay and Prof. P.K.Biswas
2
Why access security is used? Why Palm print verification? 1. no need to memorize codes or passwords. 2. more reliable
3
Image acquisition Palm positioning Feature extraction Palm print matching
4
Image acquisition Palm Positioning Feature extraction Register or verify? Palm print matching TIFF file (gray scale) Gray-scale Image Line edge map Verify Decision Register Registered model Database
5
1.Image acquisition Image of the user’s hand is taken via a camera and stored a grayscale TIFF file. 2. Palm positioning Boundary extraction and edge thinning Feature point location Establishment of coordinate system Sub image normalization
6
1. Gradient magnitude of each pixel computed using set of sobel masks for detecting horizontal, vertical and diagonal edges. 2. Adaptive thresholding :- Gr => highest gradient value taken as reference Ratio_Gradient => predetermined constant between 0 and 1 T_Gradient => Threshold value T_Gradient = Gr * Ratio_Gradient 3. Selected pixels removed from binary image to reduce all lines in the image to a single pixel width.
7
Feature point location In the boundary image’s line pattern the bottom of a valley is a short curve joining the edges of adjacent fingers. The key points are best represented as those curve’s midpoints. Establishment of the coordinate system The x-axis passes through K1 and K3.The y-axis is perpendicular to the x-axis and passes through K2 1. Sort the parallel line pairs, so that the line pairs are stored in left to right order. 2. For each parallel pair Pi in the sorted array, form a V- shape pair with the right edge of Pi and the left edge of Pi+1 (i = 0..I-2, where I is the total number of parallel pairs)
8
The rectangle specifications : 1.distance between x-axis and rectangle’s nearest side is RefLength * 0.25, RefLength =>distance between K1 and K3 2.sides parallel to x-axis and y-axis 3.symmetric with respect to y-axis 4.sides have length of RefLength Scaling and rotation is followed
9
3. Feature extraction Image Preprocessing A 3*3 averaging mask is used, which smoothes the image and minimizes the noise impact. Line Detection Standard Sobel edge detector is used followed by thresholding on edge magnitude. Image Thresholding Threshold value calculated on basis of a percentage of image area. Line thinning Resulting image contains lines of only a single pixel width Results Next
10
Thresholding of two sample images, of same person captured under different lighting conditions Return
11
Result of line detection Return
12
Result of thinningResult of Line approximation Contour tracing and the Dynamic Two-Strip (DYN2S) algorithm is applied to establish a set of straight line segments that approximate the extracted palm print lines.
13
4. Palm print matching 1. Line segment Hausdorff distance (LHD) is applied. m and t are 2 line segments Angle distance by tangent function with respect to smallest angle between m and t. Predetermined weight of angle distance
14
2. Decision Making Choice of method depends on system specification
15
Results for palm print matching system. Thus Threshold value is decided.
16
Conclusion The system will work well on images with a uniform background, but this can be further extended to handle images with arbitrary backgrounds. Since the algorithm for locating and aligning the palm print is based on line detection instead of simple segmentation, makes the system more robust and suitable for security applications with outdoor cameras.
17
References M.K.Leung, A.C.M. Fong, Siu Cheung Hui “Palm print Verification for Controlling Access to Shared Computing Resources,” IEEE Pervasive Computing, vol. 6, no. 4, 2007, pp. 40–47. W.J. Rucklidge, “Efficiently Locating Objects Using the Hausdorff Distance,” Int’l J. Computer Vision, vol. 24, no. 3, 1997,pp. 251–270. M.K. Leung and Y.H. Yang, “Dynamic Two-Strip Algorithm in Curve Fitting,” Pattern Recognition, vol. 23, nos. 1–2, 1990, pp. 69–79.
18
Thank you
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.