Presentation is loading. Please wait.

Presentation is loading. Please wait.

Bellwork: Factor Each. 5x2 + 22x + 8 4x2 – 25 81x2 – 36 20x2 – 7x – 6

Similar presentations


Presentation on theme: "Bellwork: Factor Each. 5x2 + 22x + 8 4x2 – 25 81x2 – 36 20x2 – 7x – 6"— Presentation transcript:

1 Bellwork: Factor Each. 5x2 + 22x + 8 4x2 – 25 81x2 – 36 20x2 – 7x – 6
Algebra II

2 Factoring Polynomials
4.4 Factoring Polynomials Algebra II

3 Things to Know Always check for GCF first! Learn your perfect squares:
1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, Learn your perfect cubes: 1, 8, 27, 64, 125, 216, 343, Algebra II

4 Sum or Difference of Two Cubes
(a3 + b3) = (a + b)(a2 – ab + b2) (a3 – b3) = (a – b)(a2 + ab + b2) S O A P same, opposite Always plus Algebra II

5 Examples: Factor each binomial
1. x3 + 8 (x + 2)(x2– 2x + 4) 2. 8x3 – 1 (2x – 1)(4x2+2x+1) 3. x3 – 27 (x – 3)(x2 + 3x + 9) 4. 8x3 – 125y6 (2x–5y2)(4x2+10xy2+25y4) Algebra II

6 Examples: Factor each binomial
x3 (5 + x)(25 – 5x + x2) 6. 16x5 – 250x2 2x2(8x3 – 125) 2x2(2x–5)(4x2+10x+25) 7. 81x4 – 16 **Not a perfect cube** (9x2 – 4)(9x2 + 4) (3x–2)(3x+2)(9x2+4) 8. 64a4 – 27a a(64a3 – 27) a(4a–3)(16a2+12a+9) Algebra II

7 Examples: Factor each binomial
9. 25x4 – 36 **Not a Perfect Cube** (5x2 – 6)(5x2+ 6) 10. 8x (2x +3)(4x2 – 6x+9) x9 – 27y3 (5x3–3y)(25x6+15x3y+9y2) 12. 9x8 – 25y6 **Not a Perfect Cube** (3x4 – 5y3)(3x4 + 5y3) Algebra II

8 Factoring 4 terms by Grouping
Group the first two and last two terms Factor the GCF of each group if no GCF, reorder terms and start over Factor out the binomial that is now the GCF Algebra II

9 Factor by Grouping: 4 Terms Only
1. x3 – 2x2 – 9x + 18 (x3 – 2x2) + (–9x + 18) x2(x – 2) – 9(x – 2) (x – 2)(x2 – 9) (x – 2)(x – 3)(x + 3) 2. bx2 + 2a + 2b + ax2 (bx2 + 2a) + (2b + ax2) No GCF, so reorder. (bx2+2b) + (2a + ax2) b(x2 + 2) + a(2 + x2) (x2 + 2)(b + a) Algebra II

10 Factor by Grouping: 4 Terms Only
3. 8x3 – 12x2 – 2x + 3 (8x3 – 12x2) + (–2x + 3) 4x2(2x – 3) –1(2x – 3) (2x – 3)(4x2 – 1) (2x – 3)(2x – 1)(2x + 1) 4. 2x3 – x2 + 2x – 1 (2x3 – x2) + (2x – 1) x2(2x – 1) + 1(2x–1) (2x – 1)(x2 + 1) Algebra II

11 Factor by Grouping: 4 Terms Only
5. x2y2 – 3x2 – 4y (x2y2 – 3x2) + (– 4y2+12) x2(y2 – 3) – 4(y2 – 3) (y2 – 3)(x2 – 4) (y2 – 3)(x – 2)(x + 2) 6. 32x5 – 8x3 + 4x2 – 1 (32x5 – 8x3) + (4x2 – 1) 8x3(4x2 – 1) + 1(4x2 – 1) (4x2 – 1)(8x3 + 1) (2x–1)(2x+1)(2x+1)(4x2–2x+1) Algebra II

12 Factoring Polynomials: 3 Terms
7. x4 – 8x2 – 9 (x2 – 9)(x2 + 1) (x – 3)(x + 3)(x2 + 1) 8. 3x4 – 8x2 + 4 (3x2 – 2)(x2 - 2) 9. 5x4 – 2x2 – 3 (5x2 + 3)(x2 – 1) (5x2 + 3)(x – 1)(x + 1) 10. 8x4 + 3x2 – 5 (8x2 – 5)(x2 + 1) Algebra II

13 Factor each. 1. 16x4 – x6 – 6x4 – 20x2 3. 8x3 – 343 4. x4 – 6x2 – x3 – 7x2 –12x x4 – x2 – 4 Algebra II

14 Student Journal Pg. 94-95: 20x3 – 220x2 + 600x m5 – 81m 27a3 + 8b3
5t6 + 2t5 – 5t4 – 2t3 y4 – 13y2 - 48 5p3 + 5p – 5p2 – 5 810k4 – 160 a5 + a3 – a2 – 1 2x6 – 8x5 – 42x4 5z3 + 5z2 – 6z – 6 Algebra II

15 Student Journal Pg. 94-95: 4x3 – 4x2 + x 12x2 – 22x – 20
5m4 – 70m m2 12x2 – 22x – 20 3m2 – 48m6 Algebra II

16 Show that the binomial is a factor of the polynomial
Show that the binomial is a factor of the polynomial. Then factor the funtion completely. 15. f(x) = x3 – 13x – 12; x + 1 16. f(x) = 6x3 + 8x2 – 34x – 12; x – 2 17. f(x) = 2x4 – 12x3 + 6x2 + 20x; x – 5 Algebra II


Download ppt "Bellwork: Factor Each. 5x2 + 22x + 8 4x2 – 25 81x2 – 36 20x2 – 7x – 6"

Similar presentations


Ads by Google