Download presentation
Published byAmberly Allison Modified over 9 years ago
1
Bellwork: Factor Each. 5x2 + 22x + 8 4x2 – 25 81x2 – 36 20x2 – 7x – 6
Algebra II
2
Factoring Polynomials
4.4 Factoring Polynomials Algebra II
3
Things to Know Always check for GCF first! Learn your perfect squares:
1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, Learn your perfect cubes: 1, 8, 27, 64, 125, 216, 343, Algebra II
4
Sum or Difference of Two Cubes
(a3 + b3) = (a + b)(a2 – ab + b2) (a3 – b3) = (a – b)(a2 + ab + b2) S O A P same, opposite Always plus Algebra II
5
Examples: Factor each binomial
1. x3 + 8 (x + 2)(x2– 2x + 4) 2. 8x3 – 1 (2x – 1)(4x2+2x+1) 3. x3 – 27 (x – 3)(x2 + 3x + 9) 4. 8x3 – 125y6 (2x–5y2)(4x2+10xy2+25y4) Algebra II
6
Examples: Factor each binomial
x3 (5 + x)(25 – 5x + x2) 6. 16x5 – 250x2 2x2(8x3 – 125) 2x2(2x–5)(4x2+10x+25) 7. 81x4 – 16 **Not a perfect cube** (9x2 – 4)(9x2 + 4) (3x–2)(3x+2)(9x2+4) 8. 64a4 – 27a a(64a3 – 27) a(4a–3)(16a2+12a+9) Algebra II
7
Examples: Factor each binomial
9. 25x4 – 36 **Not a Perfect Cube** (5x2 – 6)(5x2+ 6) 10. 8x (2x +3)(4x2 – 6x+9) x9 – 27y3 (5x3–3y)(25x6+15x3y+9y2) 12. 9x8 – 25y6 **Not a Perfect Cube** (3x4 – 5y3)(3x4 + 5y3) Algebra II
8
Factoring 4 terms by Grouping
Group the first two and last two terms Factor the GCF of each group if no GCF, reorder terms and start over Factor out the binomial that is now the GCF Algebra II
9
Factor by Grouping: 4 Terms Only
1. x3 – 2x2 – 9x + 18 (x3 – 2x2) + (–9x + 18) x2(x – 2) – 9(x – 2) (x – 2)(x2 – 9) (x – 2)(x – 3)(x + 3) 2. bx2 + 2a + 2b + ax2 (bx2 + 2a) + (2b + ax2) No GCF, so reorder. (bx2+2b) + (2a + ax2) b(x2 + 2) + a(2 + x2) (x2 + 2)(b + a) Algebra II
10
Factor by Grouping: 4 Terms Only
3. 8x3 – 12x2 – 2x + 3 (8x3 – 12x2) + (–2x + 3) 4x2(2x – 3) –1(2x – 3) (2x – 3)(4x2 – 1) (2x – 3)(2x – 1)(2x + 1) 4. 2x3 – x2 + 2x – 1 (2x3 – x2) + (2x – 1) x2(2x – 1) + 1(2x–1) (2x – 1)(x2 + 1) Algebra II
11
Factor by Grouping: 4 Terms Only
5. x2y2 – 3x2 – 4y (x2y2 – 3x2) + (– 4y2+12) x2(y2 – 3) – 4(y2 – 3) (y2 – 3)(x2 – 4) (y2 – 3)(x – 2)(x + 2) 6. 32x5 – 8x3 + 4x2 – 1 (32x5 – 8x3) + (4x2 – 1) 8x3(4x2 – 1) + 1(4x2 – 1) (4x2 – 1)(8x3 + 1) (2x–1)(2x+1)(2x+1)(4x2–2x+1) Algebra II
12
Factoring Polynomials: 3 Terms
7. x4 – 8x2 – 9 (x2 – 9)(x2 + 1) (x – 3)(x + 3)(x2 + 1) 8. 3x4 – 8x2 + 4 (3x2 – 2)(x2 - 2) 9. 5x4 – 2x2 – 3 (5x2 + 3)(x2 – 1) (5x2 + 3)(x – 1)(x + 1) 10. 8x4 + 3x2 – 5 (8x2 – 5)(x2 + 1) Algebra II
13
Factor each. 1. 16x4 – x6 – 6x4 – 20x2 3. 8x3 – 343 4. x4 – 6x2 – x3 – 7x2 –12x x4 – x2 – 4 Algebra II
14
Student Journal Pg. 94-95: 20x3 – 220x2 + 600x m5 – 81m 27a3 + 8b3
5t6 + 2t5 – 5t4 – 2t3 y4 – 13y2 - 48 5p3 + 5p – 5p2 – 5 810k4 – 160 a5 + a3 – a2 – 1 2x6 – 8x5 – 42x4 5z3 + 5z2 – 6z – 6 Algebra II
15
Student Journal Pg. 94-95: 4x3 – 4x2 + x 12x2 – 22x – 20
5m4 – 70m m2 12x2 – 22x – 20 3m2 – 48m6 Algebra II
16
Show that the binomial is a factor of the polynomial
Show that the binomial is a factor of the polynomial. Then factor the funtion completely. 15. f(x) = x3 – 13x – 12; x + 1 16. f(x) = 6x3 + 8x2 – 34x – 12; x – 2 17. f(x) = 2x4 – 12x3 + 6x2 + 20x; x – 5 Algebra II
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.