Presentation is loading. Please wait.

Presentation is loading. Please wait.

第五章 特征值与特征向量 —— 幂法 /* Power Method */ 计算矩阵的主特征根及对应的特征向量 Wait a second, what does that dominant eigenvalue mean? That is the eigenvalue with the largest.

Similar presentations


Presentation on theme: "第五章 特征值与特征向量 —— 幂法 /* Power Method */ 计算矩阵的主特征根及对应的特征向量 Wait a second, what does that dominant eigenvalue mean? That is the eigenvalue with the largest."— Presentation transcript:

1

2 第五章 特征值与特征向量 —— 幂法 /* Power Method */ 计算矩阵的主特征根及对应的特征向量 Wait a second, what does that dominant eigenvalue mean? That is the eigenvalue with the largest magnitude. Why in the earth do I want to know that? Don’t you have to compute the spectral radius from time to time?  原始幂法 /* the original method */ 条件: A 有特征根 | 1 | > | 2 |  …  | n |  0 ,对应 n 个线性无 关的特征向量 思路:从任意 出发,要求 … … … | i / 1 | < 1 当 k 充分大时,有 这是 A 关于 1 的近似 特征向量

3 Ch.5 Power Method – The Original Method 定理 设 A  R n  n 为非亏损矩阵 /* non-derogatory */ ,其主特 征根 /* dominant eigenvalue */ 1 为实根,且 | 1 | > | 2 |  …  | n | 。 则从任意非零向量 ( 满足 ) 出发, 迭代 收敛到主特征向量 , 收敛到 1 。 每个不同的特征根 只对应一个 Jordan 块 注:  结论对重根 1 = 2 = … = r 成立。  若有 1 =  2 , 则此法不收敛。  任取初始向量时,因为不知道 ,所以不能保 证  1  0 ,故所求得之 不一定是 ,而是使 得 的第一个 ,同时得到的特征根 是 m 。 HW: p.98 #1

4 Ch.5 Power Method – Normalization  规范化 /* normalization */ 为避免大数出现,需将迭代向量规范化,即每一步先保 证 ,再代入下一步迭代。一般用 。 记:则有: Algorithm: Power Method To approximate the dominant eigenvalue and an associated eigenvector of the n  n matrix A given a nonzero initial vector. Input: dimension n; matrix a[ ][ ]; initial vector V0[ ]; tolerance TOL; maximum number of iterations N max. Output: approximate eigenvalue and approximate eigenvector (normalized) or a message of failure.

5 Algorithm: Power Method (continued) Step 1 Set k = 1; Step 2 Find index such that | V0[ index ] | = || V0 ||  ; Step 3 Set V0[ ] = V0[ ] / V0[ index ]; /* normalize V0 */ Step 4 While ( k  N max ) do steps 5-11 Step 5 V [ ] = A V0[ ]; /* compute V k from U k  1 */ Step 6 = V[ index ]; Step 7 Find index such that | V[ index ] | = || V ||  ; Step 8 If V[ index ] == 0 then Output ( “A has the eigenvalue 0”; V0[ ] ) ; STOP. /* the matrix is singular and user should try a new V0 */ Step 9 err = || V0  V / V[ index ] ||  ; V0[ ] = V[ ] / V[ index ]; /* compute U k */ Step 10 If (err < TOL) then Output ( ; V0[ ] ) ; STOP. /* successful */ Step 11 Set k ++; Step 12 Output (Maximum number of iterations exceeded); STOP. /* unsuccessful */ Ch.5 Power Method – Normalization

6 Ch.5 Power Method – Deflation Technique  原点平移法 /* deflation technique */ 决定收敛的速度,特别 是 | 2 / 1 | 希望 | 2 / 1 | 越小越好。 不妨设 1 > 2  …  n ,且 | 2 | > | n | 。 1 2 n O p = ( 2 + n ) / 2 思路思路 令 B = A  pI ,则有 | I  A | = | I  (B+pI) | = | ( p)I  B |  A  p = B 。 而 ,所以求 B 的特征根收 敛快。 As far as the laws of mathematics refer to reality, they are not certain, and as far as they are certain, they do not refer to reality. -- Albert Einstein (1879-1955) How are we supposed to know where p is?

7  反幂法 /* Inverse Power Method */ Ch.5 Power Method –Inverse Power Method 若 A 有 | 1 |  | 2 |  … > | n | ,则 A  1 有 对应同样一组特征向量。 1 1 1 11  …   nn A  1 的主特征根 A 的绝对值最小的特征根 Q: How must we compute in every step? A: Solve a linear system with A factorized. 若知道某一特征根 i 的大致位置 p ,即对任意 j  i 有 | i  p | << | j  p | ,并且如果 (A  pI)  1 存在,则 可以用反幂法求 (A  pI)  1 的主特征根 1/( i  p ) ,收 敛将非常快。 思路思路

8 Ch.5 Power Method –Inverse Power Method Lab 09. Approximating Eigenvalues Approximate an eigenvalue and an associated eigenvector of a given n  n matrix A near a given value p and a nonzero vector. Input There are several sets of inputs. For each set: The 1 st line contains an integer 100  n  0 which is the size of a matrix. n =  1 signals the end of file. The following n lines contain the matrix entries in the format shown: The next line contains a real number TOL, which is the tolerance for eigenvalues, and an integer N  0 which is the maximum number of iterations. The next line contains an integer n  m > 0 which is the number of eigenvalues to be approximated. Each of the following m lines contains a real number p which is an initial approximation of the eigenvalue, followed by n real number entries of the nonzero vector. The numbers are separated by spaces and new lines. The inputs guarantee that the shifted matrix can be factorized by Doolittle method.

9 Ch.5 Power Method –Inverse Power Method Output (  represents a space) For each p, there must be a set of outputs in the following format: The 1 st line contains the approximation of an eigenvalue printed as in the C printf: fprintf(outfile, "%12.8f\n", lambda ); The 2 nd line contains the n entries of the associated eigenvector. Each entry is printed as in the C fprintf: fprintf(outfile, "%12.8f  ", x ); If the method fails to give a solution after N iterations, print the message “Maximum  number  of  iterations  exceeded.\n”. If p is just the accurate eigenvalue, print the message fprintf(outfile, “%12.8f  is  an  eigenvalue.\n”, p ); The outputs of two test cases must be seperated by a blank line. Sample Input 3 1  2  3 2  3  4 3  4  5 0.0000000001  1000 1 –0.6  1  1  1 2 0  1 1  0 0.0000000001  10 1 1.0  1  1 –1 Sample Output  –0.62347538  1.00000000  0.17206558  –0.65586885   1.00000000  is  an  eigenvalue.


Download ppt "第五章 特征值与特征向量 —— 幂法 /* Power Method */ 计算矩阵的主特征根及对应的特征向量 Wait a second, what does that dominant eigenvalue mean? That is the eigenvalue with the largest."

Similar presentations


Ads by Google