Presentation is loading. Please wait.

Presentation is loading. Please wait.

ISMS 2015 Urbana-Champaign, 22 June 2015 Wim Ubachs VU University Amsterdam Physics beyond the Standard Model from Molecular Hydrogen.

Similar presentations


Presentation on theme: "ISMS 2015 Urbana-Champaign, 22 June 2015 Wim Ubachs VU University Amsterdam Physics beyond the Standard Model from Molecular Hydrogen."— Presentation transcript:

1 ISMS 2015 Urbana-Champaign, 22 June 2015 Wim Ubachs VU University Amsterdam Physics beyond the Standard Model from Molecular Hydrogen

2 Some approaches 1)Search for an electron-EDM Imperial College – YbF Yale/Harvard - ThO Refute some of the SUSY models 2)Test of the symmetrization principle of quantum mechanics Spin statistics theorem; Boson-Fermion dichotomy CO 2 Mazotti, Cancio, Giusfredi, Inguscio, de Natale Phys. Rev. Lett. 86, 1919 (2001) O 2 Naus, de Lange, Ubachs Phys. Rev. A 56 (1997)

3 Physics and the Universe What do we know ? What do we not know ? Problems - Dark Matter - Dark Energy - How does Gravity fit to SM ? -Why is Gravity so weak ? -Are there only 3+1 dimensions - Are there only 4 forces ? - Proton Size Puzzle an indicator ? Fine tuning and the constants - Variation on cosmological scale - Dependencies on fields as indicators ?

4 Physics and the Universe What do we know ? What do we not know ? Problems - Dark Matter - Dark Energy - How does Gravity fit to SM ? -Why is Gravity so weak ? -Are there only 3+1 dimensions - Are there only 4 forces ? - Proton Size Puzzle an indicator ? Fine tuning and the constants - Variation on cosmological scale - Dependencies on fields as indicators ?

5 Historical Inspiration Willis E Lamb Breakdown of the Dirac theory of electron The advent of Quantum Electro Dynamics Measurement of the tiny 2S 1/2 – 2P 1/2 splitting

6 Varying Constants ? Bekenstein-Barrow –Sandvik – Mageijo – Light scalar fields  1) Coupling to cosmology Variation on cosmological time scales Coupling constants are free parameters in Standard Model 2) “Local effects” Coupling to matter density -> “chameleons” Coupling to gravity Jacob Bekenstein

7 Empirical search for a cosmological change in  =M p /m e Compare H 2 spectra in different epochs QSO 12 Gyr ago Lab today 90-112 nm ~275-350 nm

8 H 2 laboratory wavelengths The Amsterdam “XUV-laser” XUV-laser excitation P(3) C-X (1,0) R(0) B-X (9,0) line Ubachs, Phys. Rev. Lett. (2004) Reinhold et al, Phys. Rev. Lett. (2006) Salumbides et al, Phys. Rev. Lett. (2009) For HD Ivanov et al., Phys. Rev. Lett. (2008)

9 >160 lines measured at ~ 5 x 10 -8 Some lines at < 1 x 10 -8

10 K  sensitivity coefficients in H 2 Blue shifters Red shifters Anchor lines

11 VLT – UVES Paranal, Chili Keck – HIRES Hawaii, VS

12 Various systems observed

13 H 2 and cosmological  -variation 10 H 2 absorption systems towards quasars analyzed: 23 additional H 2 absorption systems towards quasars known

14 Status  = (3.5  1.6) x 10 -5

15 Cosmic Origins Spectrograph Hubble Space Telescope Spectrum of GD-133 and GD29-38 White Dwarf stars H 2 in VUV In search for the chameleon scenario (local conditions) Dependence of  on gravitational field

16

17 Dependence of  on gravitational field GD133:  = (-2.7 +/- 4.7) x 10 -5 GD29-38:  = (-5.9 +/-3.8) x 10 -5 Invoke partition function Invoke intensities (1500 lines) Fit T and  Bagdonaite et al., Phys. Rev. Lett. 113, 123002 (2014)

18 Search for (quintessence) forces; grand picture Molecules Salumbides, Ubachs, Korobov J. Mol. Spectr. 300, 65 (2014)

19 Molecules as a metrology test system Search for 5 th forces from molecular spectroscopy experiment Test of theory (QED) New Physics: Theory is needed – only for “calculable” systems  H 2 /H 2 + /HD + have become a calculable systems

20 Benchmark: Dissociation energy H 2 D o (H 2 ) = E IP (H 2 ) + D o (H 2 + ) - E IP (H) D o (H 2 + ) = 21379.350232(50) cm -1 E IP (H) = 109678.7717426(10) cm -1 E IP (H 2 )  D o (H 2 )

21 N + =2 N + =0 vibrational interlopers H 2 Dissociation energy; measurement of IP Herzberg and Jungen 1972

22 EF 1  g +, v=0, N=0,1  ~150 ns X 1  g +, v=0, N=0,1 H 2 + : X 2  g +, v + =0, N + =0,1 54p Measurement of IP in H 2 3 step approach ( Zürich-Amsterdam collaboration) 1. 2. 3. E i (ortho) = 124 357.237 97 (36) cm -1 E i (para) = 124 417.491 13 (37) cm -1

23 QED Comparison Theory/Experiment (Theory: Pachucki, Komasa, et al.)

24 Fundamental vibration in H 2 Features Narrowband UV sources Absolute frequency calibration 2-photon Doppler-free REMPI Sagnac alignment Delayed ionisation ac-Stark extrapolation E = 4161.16632(18) cm -1  E exp ~ 1.8 x 10 -4 cm -1 Dickenson, M. Niu, Salumbides, Komasa, Eikema, Pachucki, Ubachs, PRL 110, 193601 (2013). Collision-free measurement

25 HD + ions in a trap; measurement of (8,0) 750 Be + 40-85 HD + 313 nm 782 nm + 532 nm Look for loss of HD + Signal detection involves excitation of the Coulomb crystal + photons from Be+ laser cooling cycle

26 HD + spectrum J = 1 F = 0 F = 1 S = 1 S = 0 S = 1 S = 2 J = 4 J = 3 J = 2 J = 3 J = 4 J = 2 J = 3 J = 4 J = 5 J = 3 J = 0 F = 0 F = 1 S = 1 S = 0 S = 1 S = 2 J = 3 J = 2 J = 1 J = 2 J = 3 J = 1 J = 2 J = 3 J = 4 J = 2 v = 0, L =3 v = 8, L =2 782 nm Theory Experiment Experiment: 383,407,177.38(41) MHz Theory*:383,407,177.150(15) MHz *Korobov, Hilico, Karr, Phys. Rev. A 89, 032511 (2014)

27 Tests of QED in molecules Salumbides, Koelemeij, Komasa, Pachucki, Eikema, Ubachs, Phys Rev D 87, 112008 (2013).

28 Fifth-force searches Yukawa potential (Phenomenological) Hideki Yukawa Extra hadron-hadron interaction strength: range: Insert in molecular wave function

29 Fifth force constraints:

30 The future molecular test systems for physics Lifetimes 10 6 seconds (!) Quadrupole transitions ~ 10 14 Hz Possible precision 20-digit 1442 nm 1445 nm 532 nm H2H2 Two-photon Doppler-free Lamb-Dicke ion trap HD +

31 Thanks & Acknowledgement Edcel Salumbides Kjeld Eikema Julija Bagdonaite Michael Murphy Frederic Merkt Krzysztof Pachucki Vladimir Korobov MingLi Niu Jeroen Koelemeij Jurriaan Biesheuvel Laurent Hilico Jean-Philippe Karr

32 Detection Signal = fractional loss of ions (A f  A i )/A i Signal = fractional loss of ions (A f  A i )/A i B. Roth, JK, H. Daerr, S. Schiller, PRA 74, 040501(R) (2006) During secular excitation, T Be+ rises to T max During secular excitation, T Be+ rises to T max A i  T  N HD+ for T max < 400 mK A i  T  N HD+ for T max < 400 mK BUT in practice T max  4 K … BUT in practice T max  4 K … 10 s REMPD detection cycle: Secular excitation REMPD  HD+ /2  AiAi AfAf 313 nm detuning [MHz] Normalized scattering rate 10 mK 500 mK 1000 mK

33 Spatial analysis Free fit (1  ): RA = 4.9 +/- 4.8 hrs; Dec = - 66 +\- 30 degrees RA=17.5projection Dec = -58


Download ppt "ISMS 2015 Urbana-Champaign, 22 June 2015 Wim Ubachs VU University Amsterdam Physics beyond the Standard Model from Molecular Hydrogen."

Similar presentations


Ads by Google