Presentation is loading. Please wait.

Presentation is loading. Please wait.

Part I: Introduction to SHARPn Normalization Hongfang Liu, PhD, Mayo Clinic Tom Oniki, PhD, Intermountain Healthcare.

Similar presentations


Presentation on theme: "Part I: Introduction to SHARPn Normalization Hongfang Liu, PhD, Mayo Clinic Tom Oniki, PhD, Intermountain Healthcare."— Presentation transcript:

1 Part I: Introduction to SHARPn Normalization Hongfang Liu, PhD, Mayo Clinic Tom Oniki, PhD, Intermountain Healthcare

2 Data Normalization  Goals –To conduct the science for realizing semantic interoperability and integration of diverse data sources –To develop tools and resources enabling the generation of normalized EMR data for secondary uses

3 Data Normalization  Information Models Target Value Sets Raw EMR Data Tooling Normalized EMR Data Normalization Targets Normalization Process

4 Normalization Targets  Clinical Element Models –Intermountain Healthcare/GE Healthcare’s detailed clinical models  Terminology/value sets associated with the models –using standards where possible

5 CEM Models  Different models for different use cases  “CORE” models

6 “Core” Models CORE Lab CEM model CORE Lab CEM model attribute 1 attribute 2 attribute 3 attribute 4 CEM A CEM C CEM B CEM D

7 “Core” Models CORE Lab CEM model CORE Lab CEM model attribute 1 attribute 2 attribute 3 attribute 4 Secondary Use Lab CEM model CEM A CEM C CEM B CEM D attribute 1 attribute 2 attribute 3 attribute 4 CEM A CEM C CEM B CEM D

8 “Core” Models CORE Lab CEM model CORE Lab CEM model attribute 1 attribute 2 attribute 3 attribute 4 Secondary Use Lab CEM model CEM A CEMC CEM B CEMD attribute 1 attribute 2 attribute 3 attribute 4 Clinical Trial Lab CEM model Clinical Trial Lab CEM model CEMA CEM C CEM B CEM D attribute 1 attribute 2 attribute 3 attribute 4 CEM A CEM C CEM B CEM D

9 “Core” Models CORE Lab CEM model CORE Lab CEM model attribute 1 attribute 2 attribute 3 attribute 4 Secondary Use Lab CEM model CEM A CEMC CEM B CEMD attribute 1 attribute 2 attribute 3 attribute 4 Clinical Trial Lab CEM model Clinical Trial Lab CEM model CEM A CEM C CEM B CEM D attribute 1 attribute 2 attribute 3 attribute 4 CEM A CEM C CEM B CEM D EMR Lab CEM model EMR Lab CEM model CEM A CEM C CEM B CEM D attribute 1 attribute 2 attribute 3 attribute 4

10 CEM Models  Different models for different use cases  “CORE” models –CORENotedDrug -> SecondaryUseNotedDrug –COREStandardLab -> SecondaryUseStandardLab (+ 6 data type- specific models) –COREPatient -> SecondaryUsePatient

11 Generating XSDs Secondary Use Lab CEM model CEM A CEM C CEM B CEM D attribute 1 attribute 2 attribute 3 attribute 4

12 Generating XSDs Secondary Use Lab CEM model CEM A CEM C CEM B CEM D attribute 1 attribute 2 attribute 3 attribute 4 SHARP “reference class” SHARP “reference class” attribute 5 attribute 6 attribute 7 attribute 8 CEM E CEM G CEM F CEM H

13 Generating XSDs Secondary Use Lab CEM model CEM A CEM C CEM B CEM D attribute 1 attribute 2 attribute 3 attribute 4 SHARP “reference class” SHARP “reference class” attribute 5 attribute 6 attribute 7 attribute 8 CEM E CEM G CEM F CEM H COMPILE Secondary Use Lab XSD attribute 1......... attribute 3......... attribute 5......... attribute 6......... attribute 7......... attribute 8.........

14 Terminology/Value Sets  Terminology value sets define the valid values used in the models  Terminology standards are used wherever possible

15 Terminology/Value Sets  Terminology value sets define the valid values used in the models  Terminology standards are used wherever possible Secondary Use Patient CEM model Secondary Use Patient CEM model CEM B CEM A CEM C administrativeGender attribute X attribute Y attribute Z Gender CEM Gender Value Set: HL7 AdminGender {M, F}

16 CEM Request Site and Browser https://intermountainhealthcare.org/CEMrequests

17 Normalization Process  Prepare Mapping  UIMA Pipeline to transform raw EMR data to normalized EMR data based on mappings

18 Mappings  Two kinds of mappings needed: –Model Mappings –Terminology Mappings

19 Model Mappings HL7CEM Secondary Use Patient CEM model CEM A CEM C CEM B CEM D attribute 1 attribute 2 attribute 3 attribute 4 MSH PID 1 2 … OBR OBX 1 2 3 4 5 6 … Secondary Use Lab CEM model CEM A CEM C CEM B CEM D attribute 1 attribute 2 attribute 3 attribute 4

20 Model Mappings

21 Terminology Mappings HL7 from MayoCEM Local Gender Codes 1 = MALE 2 = FEMALE HL7 AdministrativeGender M = MALE F = FEMALE

22 Terminology Mappings CEM FieldsLocalCodeTargetCodeTargetCodeSystem GenderMMHL7 Gender GenderFFHL7 Gender Race22106-3CDC Race RaceW2106-3CDC Race RouterMethodDeviceORALPOHL7 Route DoseFreqBID &0800,173229799001SNOMED DoseFreqBID &0800,220229799001SNOMED DoseFreqDAILY &083069620002SNOMED DoseFreqQ24HRS396125000SNOMED DoseFreqONE TIME ORDER422114001SNOMED DoseUNITPuff415215001SNOMED DoseUNITTABLET428673006SNOMED DoseUNITtsp415703001SNOMED DoseUNITCAPSULE (HA415215001SNOMED DoseUNITpatch419702001SNOMED DoseUNITgr258682000SNOMED DoseUNITmL258773002SNOMED

23 Pipeline  Implement in UIMA (Unstructured Information Management Architecture)  Configurable –Data sources – HL7, CCD, CDA, and Table format –Model mappings (different EMR systems may have different formats) –Terminology mappings –Inference mappings – infer ingredients from clinical drugs


Download ppt "Part I: Introduction to SHARPn Normalization Hongfang Liu, PhD, Mayo Clinic Tom Oniki, PhD, Intermountain Healthcare."

Similar presentations


Ads by Google