Presentation is loading. Please wait.

Presentation is loading. Please wait.

Doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 1 TGn Sync Proposal Date: Aug 13, 2004 Aon Mujtaba, Agere Systems.

Similar presentations


Presentation on theme: "Doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 1 TGn Sync Proposal Date: Aug 13, 2004 Aon Mujtaba, Agere Systems."— Presentation transcript:

1 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 1 TGn Sync Proposal Date: Aug 13, 2004 Aon Mujtaba, Agere Systems Inc., (mujtaba@agere.com)mujtaba@agere.com Adrian P Stephens, Intel Corporation, (adrian.p.stephens@intel.com)adrian.p.stephens@intel.com Alek Purkovic, Nortel Networks (apurkovi@nortelnetworks.com)apurkovi@nortelnetworks.com Andrew Myles, Cisco Systems (amyles@cisco.com)amyles@cisco.com Brian Johnson, Nortel Networks Corporation, (brjohnso@nortelnetworks.com)brjohnso@nortelnetworks.com Daisuke Takeda, Toshiba Corporation, (daisuke.takeda@toshiba.co.jp)(daisuke.takeda@toshiba.co.jp Darren McNamara, Toshiba Corporation, (Darren.McNamara@toshiba-trel.com)Darren.McNamara@toshiba-trel.com Dongjun (DJ) Lee, Samsung Electronics Co. Ltd., (djthekid.lee@samsung.com)djthekid.lee@samsung.com David Bagby, Calypso Consulting, (david.bagby@ieee.org)david.bagby@ieee.org Eldad Perahia, Cisco Systems, (eperahia@cisco.com)eperahia@cisco.com Huanchun Ye, Atheros Communications Inc., (hcye@atheros.com)hcye@atheros.com Hui-Ling Lou, Marvell Semiconductor Inc., (hlou@marvell.com)hlou@marvell.com James Chen, Marvell Semiconductor Inc., (jamesc@marvell.com)jamesc@marvell.com James Mike Wilson, Intel Corporation, (james.mike.wilson@intel.com)james.mike.wilson@intel.com Jan Boer, Agere Systems Inc., (janboer@agere.com)janboer@agere.com Jari Jokela, Nokia, (jari.jokela@nokia.com)jari.jokela@nokia.com Jeff Gilbert, Atheros Communications Inc., (gilbertj@atheros.com)gilbertj@atheros.com Joe Pitarresi, Intel Corporation, (joe.pitarresi@intel.com)joe.pitarresi@intel.com Jörg Habetha, Royal Philips Electronics, (joerg.habetha@philips.com)joerg.habetha@philips.com John Sadowsky, Intel Corporation, (john.sadowsky@intel.com)john.sadowsky@intel.com Jon Rosdahl, Samsung Electronics Co. Ltd., (jon.rosdahl@partner.samsung.com)jon.rosdahl@partner.samsung.com Luke Qian, Cisco Systems, (lchia@cisco.com)lchia@cisco.com Mary Cramer, Agere Systems (mecramer@agere.com)mecramer@agere.com

2 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 2 Authors (continued) Masahiro Takagi, Toshiba Corporation, (masahiro3.takagi@toshiba.co.jp)masahiro3.takagi@toshiba.co.jp Monisha Ghosh, Royal Philips Electronics, (monisha.ghosh@philips.com)monisha.ghosh@philips.com Nico van Waes, Nokia, (nico.vanwaes@nokia.com)nico.vanwaes@nokia.com Osama Aboul-Magd, Nortel Networks Corporation, (osama@nortelnetworks.com)osama@nortelnetworks.com Paul Feinberg, Sony Electronics Inc., (paul.feinberg@am.sony.com)paul.feinberg@am.sony.com Pen Li, Royal Philips Electronics (pen.li@philips.com)pen.li@philips.com Peter Loc, Marvell Semiconductor Inc., (ploc@marvell.com)ploc@marvell.com Pieter-Paul Giesberts, Agere Systems Inc., (pgiesberts@agere.com)pgiesberts@agere.com Richard van Leeuwen, Agere Systems Inc., (rleeuwen@agere.com)rleeuwen@agere.com Ronald Rietman, Royal Philips Electronics, (ronald.rietman@philips.com)ronald.rietman@philips.com Seigo Nakao, SANYO Electric Co. Ltd., (snakao@gf.hm.rd.sanyo.co.jp)snakao@gf.hm.rd.sanyo.co.jp Sheung Li, Atheros Communications Inc., (sheung@atheros.com)sheung@atheros.com Stephen Shellhammer, Intel, (stephen.j.shellhammer@intel.com)stephen.j.shellhammer@intel.com Takushi Kunihiro, Sony Corporation, (kuni@wcs.sony.co.jp)kuni@wcs.sony.co.jp Teik-Kheong (TK) Tan, Royal Philips Electronics, (tktan@philips.com)tktan@philips.com Tomoko Adachi, Toshiba Corporation, (tomo.adachi@toshiba.co.jp)tomo.adachi@toshiba.co.jp Tomoya Yamaura, Sony Corporation, (yamaura@wcs.sony.co.jp)yamaura@wcs.sony.co.jp Tsuguhide Aoki, Toshiba Corporation, (tsuguhide.aoki@toshiba.co.jp)tsuguhide.aoki@toshiba.co.jp Won-Joon Choi, Atheros Communications Inc., (wjchoi@atheros.com)wjchoi@atheros.com Xiaowen Wang, Agere Systems Inc., (xiaowenw@agere.com)xiaowenw@agere.com Yasuhiko Tanabe, Toshiba Corporation, (yasuhiko.tanabe@toshiba.co.jp)yasuhiko.tanabe@toshiba.co.jp Yasuhiro Tanaka, SANYO Electric Co. Ltd., (y_tanaka@gf.hm.rd.sanyo.co.jp)y_tanaka@gf.hm.rd.sanyo.co.jp Yoshiharu Doi, SANYO Electric Co. Ltd., (doi@gf.hm.rd.sanyo.co.jp)doi@gf.hm.rd.sanyo.co.jp Yuichi Morioka, Sony Corporation, (morioka@wcs.sony.co.jp)morioka@wcs.sony.co.jp Youngsoo Kim, Samsung Electronics Co. Ltd., (KimYoungsoo@samsung.com)KimYoungsoo@samsung.com

3 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 3 TGn Sync Proposal Team - Background Team operated as a technical group to help motivate a rapid introduction of the 802.11n standard Participating companies from a broad range of markets PC Enterprise Consumer Electronics Semiconductor Handset Public Access Solution incorporates a worldwide perspective of perceived market demand and regulatory concerns –Team has representation from the US, Europe and the Pacific Rim

4 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 4 Proposal Overview High throughput and minimal design complexity –Superior robustness for a broad range of applications –Low cost, low power consumption Scalable architecture Seamless interoperability with 802.11 legacy devices Flexible architecture offering regulatory compliance in all major regulatory domains while preserving interoperability

5 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 5 PHY Summary of TGn Sync Proposal Basic configuration delivers 243 Mbps using only two antennas –Follows historical trend of 5x for 802.11 (.11 .11b .11a/g) Higher optional PHY data rate rates (>600 Mbps) for future generation devices MIMO evolution of 802.11 OFDM PHY with spatial division multiplexing of spatial streams Multiple antennas (2 mandatory, greater than 2 optional) Preamble designed for seamless interoperability with legacy 802.11a/g Wider bandwidth options with fully interoperable 20 MHz and 40 MHz* channel capability Support for licensed 10 MHz modes Optional enhancements –Advanced FEC coding techniques (RS, LDPC) –Transmit beamforming with negligible additional cost in receiving client device –1/2 guard interval –Rate 7/8 coding *Not required in regulatory domains where prohibited.

6 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 6 MAC Summary of TGn Sync Proposal Supports.11e Frame aggregation, single and multiple* destinations Bi-directional data flow Feedback mechanisms that enhance rate adaptation Protection mechanisms for seamless interoperability and coexistence with legacy devices Channel management (including receiver assisted channel training protocol) Power management * Optional

7 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 7 PHY

8 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 8 Basic Tx Data Path FEC coding –Conventional K = 7 convolutional code Rates: 1/2, 2/3 and 3/4 Supports legacy operation –Optional LDPC/RS –Optional rate 7/8 code Spatial stream parsing Frequency interleaving –Block interleaver w/ QAM bit rotation (like 11a) –20 MHz  16 columns  freq. sep. = 3 subcarriers –40 MHz  18 columns  freq. sep. = 6 subcarriers QAM modulation –BPSK, QPSK, 16 QAM and 64 QAM Optional 1/2 guard interval

9 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 9 Basic Tx Data Path 2 antenna 20 MHz 2 antenna 40 MHz

10 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 10 Basic MCS Set ModulationCode Rate Data Rates* 20 MHz (Mbps) (1,2,3,4 spatial streams) Data Rates* 40 MHz (Mbps) (1,2,3,4 spatial streams) BPSK1/26, 12, 18, 2413.5, 27, 45.5, 54 QPSK1/212, 24, 36, 4827, 54, 81, 108 QPSK3/418, 35, 54, 7240.5, 81, 121.5, 162 16 QAM1/224, 48, 72, 9654, 108, 162, 216 16 QAM3/436, 72, 108, 14481, 162, 243, 324 64 QAM2/348, 96, 144, 192108, 216, 324, 432 64 QAM3/454, 108, 162, 216121.5, 243, 364.5, 486 64 QAM7/863, 126, 189, 252141.75, 283.5, 425.25, 567 + Duplicate Format, BPSK R = ½ provides 6 Mbps for 40 MHz channels * Optional short GI (0.4  sec) increases rates by 11.1% for maximum data rate of 640 Mbps

11 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 11 Sweet Spot for 100 Mbps top-of-MAC 2x2 – 40 MHz Only 2 RF chains => Cost effective & low power Lower SNRs @ throughput => Low cost RF Throughput Overhead => Robust delivery of 100 Mbps Standard 0.8  sec GI

12 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 12 PPDU Format Legend L- Legacy, HT- High Throughput STF = Short Training Field LTF = Long Training Field SIG = Signal Field Legacy Compatible Can be decoded by any legacy 802.11a or g compliant device for interoperability

13 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 13 Spoofing RATE and LENGTH  PPDU length in OFDM symbols Spoofing –Spoofing means that the legacy RATE and LENGTH fields are falsely encoded in order to determine a specified length –L-SIG RATE = 6 Mbps  spoofing duration up to ~3 msec

14 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 14 Training Fields Design priorities –Backward compatibility with 802.11a/g –Robust performance –Cost effective implementation –Low overhead These space-time diagrams apply to both 20 and 40 MHz channels

15 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 15 Legacy Compatible Preamble CDD or single antenna The L-STF, L-LTF, L-SIG and HT-SIG are transmitted as a single spatial stream. This may be either transmitted on all Tx antennas via a method such as Cyclic Delay Diversity (CDD), or on a single antenna. These are implementation options. Requirement: These fields must be transmitted in an omni- directional mode that can be demodulated by legacy receivers.

16 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 16 HT Training Fields HT-STF –Used for 2 nd AGC HT-LTF –Used for MIMO channel estimation –Additional frequency or time alignment Tone interleaving of spatial streams

17 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 17 40 MHz PPDU Format Duplicate format preamble –Provides interoperability with 20 MHz legacy STAs –Data, pilot and training tones in each 20 MHz subchannel are identical to corresponding 20 MHz format –90 deg phase shift on upper sub-channel controls PAPR HT part –108 data tones + 6 pilots –3 center nulls (not shown)

18 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 18 40/20 MHz Interoperability 20 MHz PPDU  40 MHz receiver –Combine modulation symbols from upper & lower sub-channels –20 MHz PPDU in lower sub-channel Zero combining weights in upper subchannel No loss in performance relative to a 20 MHz receiver –Use differential sub-channel energy to detect 20 vs. 40 MHz signals 40 MHz PPDU  20 MHz receiver –One sub-channel is sufficient to decode the L-SIG –Detects only half of the 40 MHz signal  3 dB performance penalty for 20 MHz clients See MAC slides for additional information on 40/20 inter-op

19 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 19 Transmit Beamforming Basic Beamforming –Cost, complexity, and power consumption contained in the AP Enterprise AP, media server AP, set-top box, or desktop PC –Very low overhead for BF receive only client Low client cost, essentially zero overhead Low power consumption – battery operated –Basic MCS set –Channel sounding PPDU provides capability to estimate the channel from all Tx antennas –Receiver does not need to know the beamforming specifics at the transmitter –Simple packet exchange for calibration Optional Advanced Beamforming (ABF) –Extended MCS Set Provides independent modulation/coding across spatial streams –Support for unequal spatial stream power loading –Support for bi-directional beamforming

20 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 20 4 Tx AP => 2 Rx Client ~10 dB gain over Basic 2x2! => cost effective server-client

21 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 21 Optional Advanced Coding Modes Low Density Parity Check (LDPC) –Superior performance at high code rates (7/8) Reed-Solomon (RS) –Outer code concatenated with inner convolutional code –Very low cost, mature technology

22 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 22 LDPC yields a 2x2 20 MHz high throughput solution at reasonable SNR!

23 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 23 MAC

24 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 24 MAC Challenges in HT Environment HT requires an improvement in MAC Efficiency HT requires effective Rate Adaptation HT requires Legacy Protection

25 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 25 New MAC Features Aggregation Format Aggregation Exchanges –Protocol for training –Protocol for reverse direction data –Single and multiple responder Header Compression Protection Mechanisms Coexistence & Channel Management MIMO Power Management

26 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 26 Aggregation Framing Robust Structure Aggregation Framing is a purely-MAC function (PHY has no knowledge of MPDU boundaries)

27 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 27 Aggregate Exchange Sequences MPDU or frame exchange sequences now extended to aggregate exchange sequences in which groups of frames are exchanged “at a time” –Allows effective use of Aggregate Feature –Allows control, data and acknowledgement to be sent in the same PPDU An initiator sends a PPDU and a responder may transmit a response PPDU –Either PPDU can be an aggregate (“Initiator” / “responder” are new terms relating to roles in aggregate exchange protocol)

28 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 28 Basic Aggregate Exchange

29 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 29 Reverse Direction Protocol

30 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 30 Training Protocol

31 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 31 Periodic Multi-Receiver Aggregation

32 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 32 LongNAV protection Provides protection of a sequence of multiple PPDUs Provides a solution for.11b Comes “for free” with polled TXOP Gives maximum freedom in use of TXOP by initiator

33 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 33 Pairwise Spoofing Protection Protects pairs of PPDUs (current and following) Very low overhead, suitable for short exchanges Places Legacy devices into receiving mode for spoofed duration Spoofing is interpreted by HT devices as a NAV setting

34 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 34 Operating Mode Selection BSS operating mode controls the use of protection mechanisms and 40/20 width switching by HT STA –Supports mixed BSS of legacy + HT devices HT AP-managed modes –If only the control channel is overlapped, managed mixed mode provides a low overhead alternative to mixed mode –If both channels are overlapped, 20 MHz base mode allows an HT AP to dynamically switch channel width for 40 MHz- capable HT STA

35 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 35 MAC Architecture

36 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 36 CC 28/29 Performance Mandatory features only

37 doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 37 MAC Selected CC Performance CC#NameResultHCCA 2x2x202x2x40 CC3List of goodput results for usage models 1, 4 and 6. SS1 (Mbps)55.276.8 SS445.174.1 SS644.962.1 CC18HT Usage Models Supported (non QoS) SS1 (Mbps/ratio) 2.76/0.0924.4/0.8 SS436.0/0.0765.0/0.14 SS60.1/0.00517.24/0.86 CC19HT Usage Models Supported (QoS) SS117/17 SS418/18 SS639/39 CC58HT Spectral Efficiencybps/Hz5.46.075


Download ppt "Doc.: IEEE 802.11-04/888r0 Submission August 2004 Aon Mujtaba, Agere Systems, et alSlide 1 TGn Sync Proposal Date: Aug 13, 2004 Aon Mujtaba, Agere Systems."

Similar presentations


Ads by Google