Presentation is loading. Please wait.

Presentation is loading. Please wait.

Models of Computation نظریه زبان ها و ماشین ها Iranai.blog.ir IRANAI.BLOG.ir _

Similar presentations


Presentation on theme: "Models of Computation نظریه زبان ها و ماشین ها Iranai.blog.ir IRANAI.BLOG.ir _"— Presentation transcript:

1 Models of Computation نظریه زبان ها و ماشین ها Iranai.blog.ir IRANAI.BLOG.ir _ iranai1992@yahoo.com

2 Computation CPUmemory ماشین محاسباتی :

3 CPU output memory Program memory temporary memory برنامه ای که قرار است اجرا شود را داخل آن می نویسیم. نتیجه محاسبات را نگهداری می کند. input memory

4 Example: x = 2 input memory temporary memory Program memory F(x) = 8 CPU F(x) = 8 output memory

5 Automaton حالت کلی ماشین : CPU output memory Program memory temporary memory input memory Automaton قسمت کنترلی ماشین

6 Different Kinds of Automata Automata are distinguished by the temporary memory Finite Automata: no temporary memory Pushdown Automata: stack Turing Machines: random access memory

7 Finite Automaton Vending Machines (small computing power) output memory temporary memory input memory ماشین متناهی : ماشین نوع سوم قدرت محاسباتی ضعیف

8 Pushdown Automaton Programming Languages (medium computing power) output memory input memory ماشین پشته ای : ماشین نوع دوم قدرت محاسباتی بهتر از ماشین متناهی Pushdown Automaton Stack

9 Turing Machine Algorithms (highest computing power) Turing Machine output memory Random Access Memory input memory ماشین تورینگ : ماشین نوع اول قدرت محاسباتی قوی

10 Finite Automata Pushdown Automata Turing Machine Power of Automata

11 We will show later in class How to build compilers for programming languages Some computational problems cannot be solved Some problems are hard to solve

12 Sets Functions Relations Graphs Proof Techniques Mathematical Preliminaries مجموعه ها توابع روابط ریاضی گراف ها تکنیک های اثبات

13 SETS A set is a collection of elements We write زبان توسط مجموعه تعریف می شود.

14 C = { a, b, c, d, e, f, g, h, i, j, k } C = { a, b, …, k } S = { 2, 4, 6, … } S = { j : j > 0, and j = 2k for some k>0 } S = { j : j is nonnegative and even } finite set infinite set Set Representations

15 A = { 1, 2, 3, 4, 5 } Universal Set: All possible elements U = { 1, …, 10 } 1 2 3 4 5 A U 6 7 8 9 10

16 A = { 1, 2, 3 } B = { 2, 3, 4, 5} Union A U B = { 1, 2, 3, 4, 5 } Intersection A B = { 2, 3 } Difference A - B = { 1 } B - A = { 4, 5 } U A B A-B Set Operations

17 Complement Universal set = {1, …, 7} A = { 1, 2, 3 } A = { 4, 5, 6, 7} 1 2 3 4 5 6 7 A A A = A مجموعه متمم ، مجموعه عناصری است که در مجموعه مرجع وجود دارد ولی در مجموعه اصلی نیست.

18 0 2 4 6 1 3 5 7 even { even integers } = { odd integers } odd Integers

19 DeMorgan’s Laws A U B = A B U A B = A U B U

20 Empty, Null Set: = { } S U = S S = S - = S - S = U = Universal Set

21 Subset A = { 1, 2, 3} B = { 1, 2, 3, 4, 5 } A B U Proper Subset:A B U A B

22 Disjoint Sets A = { 1, 2, 3 } B = { 5, 6} A B = U AB

23 Set Cardinality For finite sets A = { 2, 5, 7 } |A| = 3

24 Powersets A powerset is a set of sets Powerset of S = the set of all the subsets of S S = { a, b, c } 2 S = {, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} } Observation: | 2 S | = 2 |S| ( 8 = 2 3 )

25 Cartesian Product A = { 2, 4 } B = { 2, 3, 5 } A X B = { (2, 2), (2, 3), (2, 5), ( 4, 2), (4, 3), (4, 4) } |A X B| = |A| |B| Generalizes to more than two sets A X B X … X Z

26 FUNCTIONS domain 1 2 3 f : A -> B A If A = domain then f is a total function otherwise f is a partial function f(1) = a range a b c B

27 RELATIONS R = {(x 1, y 1 ), (x 2, y 2 ), (x 3, y 3 ), …} x i R y i e. g. if R = ‘>’: 2 > 1, 3 > 2, 3 > 1 In relations x i can be repeated

28 Equivalence Relations Reflexive: x R x Symmetric: x R y y R x Transitive: x R Y and y R z x R z Example: R = ‘=‘ x = x x = y y = x x = y and y = z x = z

29 Equivalence Classes For equivalence relation R equivalence class of x = {y : x R y} Example: R = { (1, 1), (2, 2), (1, 2), (2, 1), (3, 3), (4, 4), (3, 4), (4, 3) } Equivalence class of 1 = {1, 2} Equivalence class of 3 = {3, 4}

30 GRAPHS A directed graph Nodes (Vertices) V = { a, b, c, d, e } Edges E = { (a, b), (b, c), (c, a), (b, d), (d, c), (e, d) } e a b c d node edge گراف از دو مجموعه گره ها و یال ها تشکیل می شود.

31 Labeled Graph e a b c d 5 1 6 2 6 3 Walk is a sequence of adjacent edges (e, d), (d, c), (c, a) Path is a walk where no edge is repeated Simple path: no node is repeated راه، دنباله ای از یال (Edge) های همسایه است. ( می تواند تکراری باشد ) مسیر، راهی است که هیچکدام از یال های آن تکراری نباشد.

32 Cycle Cycle: a walk from a node (base) to itself Simple cycle: only the base node is repeated base e a b c d دور، مسیری است که فقط گره اول در آن تکرار می شود.

33 Hamiltonian Cycle A Simple cycle that contains all nodes e a b c d 3 4 2 1 7 6 5 8 base دور هامیلتون، دوری است که همه نودها در آن ها فقط و فقط یکبار طی می شوند.

34 Finding All Simple Paths e a b c d f (c, a) (c, e) (c, a), (a, b) (c, e), (e, b) (c, e), (e, d) Step 2Step 3 (c, e), (e, d), (d, f) Repeat the same for each starting node Step 1 base

35 Trees root leaf parent child Trees have no cycles Level 0 Level 1 Level 2 Level 3 Height 3 درخت گرافی است که سیکل ندارد.

36 PROOF TECHNIQUES Proof by induction Proof by contradiction

37 Induction We have statements P 1, P 2, P 3, … If we know for some k that P 1, P 2, …, P k are true for any n >= k that P 1, P 2, …, P n imply P n+1 Then Every P i is true

38 Proof by Induction Inductive basis Find P 1, P 2, …, P k which are true Inductive hypothesis Let’s assume P 1, P 2, …, P n are true, for any n >= k Inductive step Show that P n+1 is true

39 Example Theorem: A binary tree of height n has at most 2 n leaves. Proof: let l(i) be the number of leaves at level i l(0) = 1 l(3) = 8

40 We want to show: l(i) <= 2 i Inductive basis l(0) = 1 (the root node) Inductive hypothesis Let’s assume l(i) <= 2 i for all i = 0, 1, …, n Induction step we need to show that l(n + 1) <= 2 n+1

41 Induction Step hypothesis: l(n) <= 2 n Level n n+1 l(n+1) <= 2 * l(n) <= 2 * 2 n = 2 n+1

42 Remark Recursion is another thing Example of recursive function: f(n) = f(n-1) + f(n-2) f(0) = 1, f(1) = 1

43 Proof by Contradiction We want to prove that a statement P is true we assume that P is false then we arrive at an incorrect conclusion therefore, statement P must be true

44 Example Theorem: is not rational Proof: Assume by contradiction that it is rational = n/m n and m have no common factors We will show that this is impossible

45 = n/m 2 m 2 = n 2 Therefore, n 2 is even n is even n = 2 k 2 m 2 = 4k 2 m 2 = 2k 2 m is even m = 2 p Thus, m and n have common factor 2 Contradiction!

46 باتشکر از : دکتر وحید خواجه وند


Download ppt "Models of Computation نظریه زبان ها و ماشین ها Iranai.blog.ir IRANAI.BLOG.ir _"

Similar presentations


Ads by Google