Download presentation
Presentation is loading. Please wait.
Published byEmma Perry Modified over 9 years ago
1
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Ultra Wideband impulse radio using free-verse pulse waveform shaping, Soft- Spectrum adaptation, and local sine template receiving] Date Submitted: [3 March, 2003] Source: [Ryuji Kohno, Honggang Zhang, Hiroyuki Nagasaka] Company [(1) Communications Research Laboratory, (2) Yokohama National University, (3) Samsung Yokohama Research Institute] Connector’s Address [3-4, Hikarino-oka, Yokosuka, 239-0847, Japan] Voice:[+81-468-47-5101], FAX: [+81-468-47-5431], E-Mail:[ kohno@crl.go.jp, honggang@crl.go.jp, nhiroy@samsung.co.jp] Re: [IEEE P802.15 Alternative PHY Call For Proposals, IEEE P802.15-02/327r7] Abstract:[Soft-Spectrum UWB transferring schemes with free-verse and geometric pulse waveform adaptation and shaping are proposed, which are suitable for co-existence, interference avoidance, matching with regulatory spectral mask, and high data rate. Local sine template receiving scheme is also investigated for Soft-Spectrum UWB impulse radio.] Purpose:[For investigating the characteristics of High Rate Alternative PHY standard in 802.15TG3a, based on Soft-Spectrum adaptation, pulse waveform shaping and local sine template receiving] Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.
2
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 2 Ultra Wideband Impulse Radio Using Free-Verse Pulse Waveform Shaping, Soft- Spectrum Adaptation and Local Sine Template Receiving Ryuji Kohno* §, Honggang Zhang *, Hiroyuki Nagasaka ‡ * UWB Technology Institute Communications Research Laboratory (CRL) § Yokohama National University ‡ Samsung Yokohama Research Institute
3
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 3 Outline Philosophy of Soft-Spectrum adaptation with flexible pulse waveform design Soft-Spectrum adaptation based on free-verse pulse waveform shaping Soft-Spectrum adaptation based on geometric pulse waveform shaping Interference avoidance and co-existence Scalable, adaptive performance improvement Local sine template receiving Summary
4
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 4 What’s the solution? (I) Pulse domain (II) Spectrum domain Considering the whole frequency bands from DC to 15 GHz, in regard of the FCC Spectrum Mask The maximum emission power is limited to –80dBm/MHz (whole bands) Frequency efficiency is extremely worse What we want to do ? Giving spectrum freedom flexible pulse design Maintaining exchangeability with existing UWB systems Still keeping the pulse width in the order of ns for high data rate
5
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 5 Basic philosophy EX(1): some bands are restrained EX(2): free-verse spectrum design Pulse design corresponding to the required bandwidths Flexible and adaptive spectrum (Soft-Spectrum), even if the Spectrum Mask were changed
6
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 6 Section (I) Soft-Spectrum (Soft-Bands) Adaptation with Free-Verse Pulse Waveform Shaping
7
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 7 Basic FormulationPulse Generator Divide the whole bandwidth into several sub-bands Soft Spectrum (spectrum matching) Pulse synthesis M-ary signaling B:bandwidth [f H ~ f L] N division Feasible Solution: Pulse design satisfying Spectrum Mask
8
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 8 Robustness to MAI Frequency characteristics Pulse width Tread-off Pulse width of 10 ns Pulse width of 3 ns
9
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 9 A: Conventional pulseB: Proposed pulse (K-1) AWGNChannel 6.75GHz99% Bandwidth Gold SequenceTH Sequence 10ns/8 Frame/Slot 3ns (A)/0.39ns(B)Pulse width PPM (Asyn.)Modulation 5, 10Users 10000bitsTransmitted data Performance comparisons of Multiple Access Interference(MAI)
10
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 10 BER performance comparisons of pulse (A) and (K-1) AWGNChannel Gold SequenceTH Sequence 100Mbps Data rate (A) 1.0/3ns (B) 2.84*10 /0.7ns (A) 4.89*10 /0.39ns (A) 0.76 /30ns (BPF) SNR/Pulse width PPM (Asyn.)Modulation 1Users 10000bitsTransmitted data -5
11
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 11 Feasible Solution: Pulse design satisfying coexistence and interference avoidance with existing narrowband systems [GHz] Time and frequency domain characteristics of the conventional Gaussian-type pulse
12
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 12 Data rate UWB : 3.2Mbps SS : 384kbps Bandwidth UWB : 3.2GHz SS : 3.4MHz DS-SS chip rate : 3.84Mcps DS-SS carrier frequency ωc:2GHz UWB pulse time duration : 0.7ns Number of pulses per symbol Ns : 31 Pulse repetition time Tf : 10ns DIR:-16.66dB Performance comparisons of the coexistence of the DS- SS and UWB systems (2) BER of UWB system while receiving interference from other co-existing DS-SS system (1) BER of UWB system while causing interference to other co-existing DS-SS system
13
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 13 Time and frequency domain characteristics of the proposed Dual-cycle pulse (K-2) (Note: several band notches happen)
14
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 14 Performance comparisons of the coexistence of the DS-SS and UWB systems (K-2) (1) BER of DS-SS system while Dual- cycle UWB system co-exists (2) BER of Dual-cycle UWB system while DS-SS system co-exists
15
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 15 Time and frequency domain characteristics of the proposed specific pulse waveform (K-3) generated by different Gaussain pulses overlapping (Note: band notches happen at 2.4 and 5 GHz)
16
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 16 (1) BER of DS-SS system while K-3 UWB system causing interference (2) BER of K-3 UWB system while DS-SS system causing interference Performance comparisons of the coexistence of DS- SS and UWB systems (K-3) (Note: DS-SS system uses carrier frequency of 2.4 GHz, i.e. notch band for the proposed UWB system )
17
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 17 Time and frequency domain characteristics of another proposed pulse waveform (K-4) generated by different Gaussain pulses overlapping (Note: band notches clearly happen at 2.4 and 5 GHz as well)
18
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 18 (1) BER of DS-SS system while K-4 UWB system causing interference (2) BER of K-4 UWB system while DS-SS system causing interference Performance comparisons of the coexistence of the DS-SS and UWB systems (K-4) (Note: DS-SS system uses carrier frequency of 2.5 GHz, i.e. notch band for the proposed UWB system )
19
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 19 Giving Spectrum Freedom Flexible pulse waveform and spectrum design
20
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 20 Section (II) Soft-Spectrum (Soft-Bands) Adaptation with Geometric Pulse Waveform Shaping
21
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 21 Geometric (regular) Soft-Spectrum pulse waveform with Bi- phase/Bi-polar modulation (Several bits per geometric Soft-Spectrum pulse is available, seeing the following Slides) Data 1: Data 0: tt
22
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 22 -2.5-2-1.5-0.500.511.522.5 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 Soft-Spectrum waveform based on Gaussin Monocycle Time (ns) Waveform Amplitude [V] Geometric Soft-Spectrum (SS) pulse waveform generated by a series of Gaussian pulses (the left) Geometric Soft-Spectrum (SS) pulse waveform generated by a series of Gaussian Monocycles (the right) First derivative of Gaussian pulses
23
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 23 0102030405060 -400 -350 -300 -250 -200 -150 -100 -50 0 Power Spectral Density of 1th Derivative of Soft-Spectrum Gaussian Pulses Frequency (Sample: 1Sample=200MHz) Power Spectral Density (PSD) [dB] Spectral characteristics of the geometric Soft-Spectrum Gaussian pulses (the left) Spectral characteristics of first derivative of the geometric Soft-Spectrum Gaussian pulses (the right) – Gaussian Monocycle type
24
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 24 05101520253035404550 -140 -120 -100 -80 -60 -40 -20 0 Power Spectral Density of Soft-Spectrum Gaussian Pulses Frequency (Sample: 1Sample=200MHz ) Power Spectral Density (PSD) [dB] 05101520253035404550 -400 -350 -300 -250 -200 -150 -100 -50 0 Power Spectral Density of 1th Derivative of Soft-Spectrum Gaussian Pulses Frequency (Sample: 1Sample=200MHz) Power Spectral Density (PSD) [dB] -2.5-2-1.5-0.500.511.522.5 -0.5 0 0.5 1 1.5 Soft-Spectrum waveform based on Gaussian pulse Time (ns) Waveform Amplitude [V]
25
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 25 05101520253035404550 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 Power Spectral Density of Soft-Spectrum Gaussian Pulses Frequency (Sample: 1Sample=200MHz) Power Spectral Density (PSD) [dB ] 05101520253035404550 -450 -400 -350 -300 -250 -200 -150 -100 -50 Power Spectral Density of 1th Derivative of Soft-Spectrum Gaussian Pulses Frequency (Sample: 1Sample=200MHz) Power Spectral Density (PSD) [dB]
26
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 26 Adaptive, controllable Spread-and-Shrink (SS) of frequency bandwidths (i.e. Soft-Spectrum) is feasible, according to the actual interference environment and the spectrum requirements “Soft-Bands” philosophy as mentioned before 05101520253035404550 -200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0 Power Spectral Density of Soft-Spectrum Gaussian pulses Frequency (Sample: 1Sample=200MHz) Power Spectral Density (PSD) [dB]
27
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 27 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Geometric Soft-Spectrum pulse waveforms with various envelopes Triangular-type envelope Exponential-type envelope Rugby-football-type envelopeGaussian-type envelope -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
28
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 28 05101520253035404550 -400 -350 -300 -250 -200 -150 -100 -50 0 Power Spectral Density of 1th Derivative of Soft-Spectrum Gaussian Pulses Frequency (Sample: 1Sample=200MHz) Power Spectral Density (PSD) [dB] 05101520253035404550 -200 -180 -160 -140 -120 -100 -80 -60 -40 Frequency (Sample: 1Sample=200MHz) Power Spectral Density (PSD) [dB] -20 0 Power Spectral Density of Soft-Spectrum Gaussian Pulses
29
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 29 05101520253035404550 -400 -350 -300 -250 -200 -150 -100 -50 0 Power Spectral Density of 1th Derivative of Soft-Spectrum Gaussian Pulses Frequency (Sample: 1Sample=200MHz) Power Spectral Density (PSD) [dB]
30
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 30 05101520253035404550 -180 -160 -140 -120 -100 -80 -60 -40 -20 0 Power Spectral Density of Soft-Spectrum Gaussian Pulses Frequency (Sample: 1Sample=200MHz) Power Spectral Density (PSD) [dB] 05101520253035404550 -400 -350 -300 -250 -200 -150 -100 -50 0 Power Spectral Density of 1th Derivative of Soft-Spectrum Gaussian Pulses Frequency (Sample: 1Sample=200MHz) Power Spectral Density (PSD) [dB]
31
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 31 Spectral characteristics with respect to various geometric Soft-Spectrum pulse waveforms ( i.e., Exponential-, Rugby-Football-, and Gaussian-type envelops)
32
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 32 Interference avoidance and co-existence using flexible geometric Soft-Spectrum pulse transmission Spectrum overlapping and possible interference with WLAN (802.11a) Do not use overlapping frequency bandwidth causing possible interference
33
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 33 Geometric Soft-Spectrum adaptation (Spread-and- Shrink) and pulse waveform shaping provide new dimension, frontier, and challenge ( seeing FCC UWB Emission Limit: FCC 02-48, UWB Report & Order)
34
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 34 3.1 10.6 Just a dream- world? “The New Continent” ? GPS Band
35
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 35 Successful precedent : Adaptive Frequency-Hopping (Co-existence of Bluetooth and IEEE 802.11b)
36
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 36 M-ary Pulse Shape Modulation (PSM) or Pulse Shape Multiple Access (PSMA) based on geometric Soft-Spectrum waveforms or t I 100 110101 t 000 010001 t t II III
37
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 37 Comparisons of Hard-Spectrum (single-band) and geometric Soft-Spectrum (Soft-Bands) impulse radio transmissions Raw bit rate/bits per pulse / No. of sub- bands Raw bit rate*pulses per bit PRF (per sub-band) One or more bits per pulse Multiple pulses per bitProcessing Gain (per sub-band) Multiple sub-bandsOneFrequency Bands LowHighDuty Cycle (PRF) Soft-SpectrumHard-Spectrum
38
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 38 Indoor multipath fading: Example of indoor UWB impulse radio signal propagation (IEEE 802.15SG3a S-V model) 050100150200250 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 Impulse response realizations Time (ns) From transmitter TX RX
39
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 39 Another example of indoor UWB impulse radio signal propagation
40
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 40 Geometric Soft-Spectrum pulses Group Delay -0.5 0 0.5 1 -0.5 0 0.5 1 Geometric Soft-Spectrum inter-pulse interference caused by multipath fading Group Delay -0.5 0 0.5 1
41
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 41 Inter-pulse interference effects of multipath fading on various geometric Soft-Spectrum pulse waveforms -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
42
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 42 Multipath diversity for geometric Soft-Spectrum intra/inter pulse combining TcTc C1(t)C1(t)C2(t)C2(t)C3(t)C3(t)C N (t) TcTc TcTc Soft-Spectrum Rake Receiver BPF -0.5 0 0.5 1 Geometric Soft-Spectrum pulses
43
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 43 Improved intra-pulse multipath combining performance, but deteriorated inter-pulse multipath combining performance if geometric Soft-Spectrum waveform Group Delay were not resolved Deteriorated intra-pulse multipath combining performance, but improved inter-pulse multipath combining performance if geometric Soft-Spectrum waveform Group Delay were not resolved Intermediated multipath combining performance achievement -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 Multipath diversity for various geometric Soft-Spectrum pulse waveforms
44
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 44 Master or Hub Slave or Leaf node Proxy node or wireless Bridge A B C Several neighbor piconets in UWB multiuser environment
45
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 45 Source node Data link layer control: identification and management of usable resource multi-hop link one-hop direct link Destination node Multi-hop UWB WPAN with resource management, relaying and route discovering
46
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 46 UWB multi-hop communications with Ad-hoc real-time relaying for multimedia data transfer (Multipath combining scheme is used by the real-time UWB Repeater) RX TX UWB RP Pre-RakePost-Rake TX RX RP 10 m
47
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 47 -20-15-10-5051015 10 -6 10 -5 10 -4 10 -3 10 -2 10 10 0 BER in free space loss and AL (assumed loss: -10dB more power attenuation than free space loss) SNR[dB] BER direct path only multipath channel multipath channel without direct path between TX and RX using Rake on the RP using Rake on the RP but RP receives no direct path multipath channel in AL multipath channel without direct path between TX and RP in AL using Rake on the RP in AL using Rake on the RP in AL but RP receives no direct path Performance improvement by using Multipath combining scheme at the real-time UWB Repeater
48
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 48 Section (III) Local Sine Template Receiving fro UWB Impulse Radio
49
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 49 Utilizing local-generated sine template instead of conventional TH-PPM template- pulse Simplified correlator circuits Low cost, low power consumption Robustness to impulse radio multipath fading Necessary to estimate and control local Initial-phase Characteristics of proposed Local Sine Template receiving
50
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 50 Pulse sequences generation and modulation on transmitting side
51
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 51 Pulse sequences after Band Pass Filtering (BPF) on transmitting side
52
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 52 Received pulse sequences before adding AWGN on receiving side
53
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 53 Received pulse sequences after adding AWGN on receiving side
54
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 54 Received pulse sequences after BPF and Mixer on receiving side (Correlation with local sine template)
55
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 55 Received pulse sequences after Low Pass Filtering (LPF) on receiving side (demodulation and data out)
56
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 56 Effects of Initial-phase estimation scheme (i.e. Initial- phase=180deg)
57
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 57 Effects of Initial-phase estimation scheme (i.e. Initial- phase=150deg)
58
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 58 Effects of Initial-phase estimation scheme (i.e. Initial- phase=120deg)
59
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 59 Effects of Initial-phase estimation scheme (i.e. Initial- phase=90deg)
60
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 60 Effects of Initial-phase estimation scheme (i.e. Initial- phase=45deg)
61
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 61 Effects of Initial-phase estimation scheme (i.e. Initial- phase=0deg)
62
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 62 Summary (I) We propose a Ultra Wideband impulse radio transferring scheme utilizing Soft-Spectrum adaptation and free-verse pulse waveform shaping. Soft-Spectrum adaptation and free-verse pulse waveform shaping can satisfy the FCC Spectrum Mask freely and be applied to avoid possible interferences with other existing narrowband wireless systems. Scalable and adaptive performance improvement can be achieved by utilizing pulse waveform shaping even in multi-user and multipath fading environment.
63
doc.: IEEE 802.15-03/097r1 Submission March, 2003 R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 63 We also propose a local sine template receiving scheme. Simplified correlation scheme and immunity to multipath fading can be achieved. Initial-phase control is needed. Summary (II) Reference Patent Pending in Japan
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.