Download presentation
Presentation is loading. Please wait.
Published byOliver Atkins Modified over 9 years ago
1
Topologically-Aware Overlay Construction and Sever Selection Sylvia Ratnasamy, Mark Handley, Richard Karp, Scott Shenker
2
Motivation Constructing overlay by incorporating physical topology into the logical topology Selecting a good sever in content distribution and P2P file sharing by considering the physical topology
3
(Images downloaded from http://www.mapresources.com/photoshop_maps/) 1 3 2 4 Topology-aware Overlay 4 12 3
4
4 12 3 (Images downloaded from http://www.mapresources.com/photoshop_maps/) 1 3 2 4 The logical structure of the overlay should take into account the physical structure of the underlying network!
5
Outline Motivation Binning Scheme Applying Binning Scheme
6
Design Consideration Desirable Properties: Practicality and Scalability –Simple –Fast converge to a good state –Distributed – no central point of failure or bottleneck –Scalable – for millions of nodes Priorities: (Scalability + Practicality) > Accuracy
7
Method Network Measurement used: Network Latency –Non-intrusive –Light-weight –End-to-end Binning Scheme
8
Distributed Binning Clustering the nodes by a set of landmark machines spread across the internet. Nodes measure RTT to each of these landmarks and orders the landmarks in increasing RTT. Divide the range of possible latency values into levels
9
Distributed Binning Example
10
Discussion Will Binning Scheme effect distributed, scalable properties? –Given each node computing the annotation, who do the clustering? –Where is the clustering result(approximate physical topology) stored?
11
Scalability Every node will ping all landmarks to refresh the topology. –At a million nodes on the network, refreshing at every hour, each landmark would approximately handle 2700pings/sec. How to guarantee balance visits? –Better scalability by have multiple nodes at a location act as a single logical landmark.
12
Performance Experiment Set Measurement –For each node in a bin compute Gain ratio = inter-bin latency / intra-bin latency – Ratio = Reduction in Latency = Desirable Data Set –Transit Stub (1,000 and 10,000 nodes) –Power-law Random Graphs (1,166 and 1,779 nodes) –NLANR(103 nodes) Assumption –The landmark machines is separated form each other by 4 hops
13
Increasing Number of Levels Gain Ratio is improved with level increasing Improvement rapidly saturates
14
Increasing Number of Landmarks Gain Ratio is improved with landmarks increasing Improvement rapidly saturates except TS-10k
15
Binning Vs (Random, Nearest-Neighbor) Random Binning: Each node selects a bin at random. Nearest Neighbor Clustering: At each iteration, two closest clusters are merged into a single cluster.
16
Discussion Is gain ration a reasonable way to measure the performance of binning scheme? What is the effect of increasing the nodes. Is the assumption too strong for the experiment data, that the landmark machines is separated form each other by 4 hops?
17
Outline Motivation Binning Scheme Applying Binning Scheme
18
Construction of Overlays –Structured: Nodes are interconnected (at application- level) in a well-defined manner. Content-Addressable Network, Chord, PASTRY, Tapestry –Unstructured: Less structured networks End-system. Multicast, Scattercast Sever Selection
19
Construction of Overlays Measurement –Latency Stretch: ratio of average inter-node latency on the overlay network to the average inter-node latency on the underlying IP-level network. – Latency Stretch = Better!
20
Construction of CAN Only ordering of landmarks is used for binning so that there are m! orderings for m landmarks. Build a m dimensions cube. Each dimension has m, m-1, …, 1 elements. Each point in the cub is correspondent to one order. New node joins CAN at the portion associated with its landmark ordering.
21
Side Effect Co-ordinate space not uniformly populated The average number of hops on the path between two points decrease. ?
24
Discussion Overlay nodes >> physical nodes ? Given each node in CAN can store multiple network nodes, how to store and change the CAN topology.
25
Construction of Unstructured Overlays Given a set of n nodes on the Internet, each node pick k neighbor, so that the average routing latency is low. Short-Long: k/2 closest nodes+ k/2 random nodes BinShort-Long: k/2 nodes self-bin nodes + k/2 other BinShort-Long with Sample: k/2 closest nodes from a sample set of self-bin + k/2 other
26
Discussion How to random select nodes given distributed environment.
28
Server - Selection Select server in the same bin If no such sever, select the sever with most_similar_bin to client’s
29
Stretch = (latency to selected server) / (latency to optimal server)
30
Performance is improved with landmarks increasing Improvement rapidly saturates
31
- For TS-10K 1000 servers, rest clients
32
- Adjusted stretch ?
33
- For NLANR data
34
Discussion Load unbalance Select 1 sever from 1000 sever in a 10k nodes.
35
Conclusion A simple, scalable, binning scheme to infer network proximity information Applying this scheme to overlay construction and server selection can significantly improve application performance.
36
Thank you! Any questions?
37
Distributed Binning Set of nodes independently partition into disjoint “ bin ” –Nodes within a single bin are relatively closer to one another than to nodes not in their bin Small set of Landmark machines geographically distributed over the Internet to “ measure ” latency Check average inter-bin and intra-bin latencies to ensure binning does the job
38
Distributed Binning Example
39
TS-10K and TA-1K: Transit-sub topologies with 10,000 and 1000 nodes PLRG1 and PLRG2: Power-Law Random Graphs with 1166 and 1779 nodes NLANR: National Lab for Applied Network Research based Active Measurement Project –Consisting of 100 active monitors that exchange information
40
Distributed Binning Example TS-10K and TA-1K: Transit-sub topologies with 10,000 and 1000 nodes PLRG1 and PLRG2: Power-Law Random Graphs with 1166 and 1779 nodes NLANR: National Lab for Applied Network Research based Active Measurement Project –Consisting of 100 active monitors that exchange information
41
Binning based Server Selection If there exists one or more servers within the same bin as the client, then the client is redirected to a random server from its own bin If no server exists within the same bin as the client, an existing server from another similar bin
42
Latency Stretch Comparison
43
Scalability Each node only needs measure with small set of landmarks –At a million nodes on the network, refreshing at every hour, each landmark would approximately handle 2700pings/sec. –Better scalability by have multiple nodes at a location act as a single logical landmark.
44
Construction of CAN topologies using Binning –Ordering of landmarks is used for binning –m landmarks, m! orderings –Co-ordinate space divided along first dimension into m portions, each portion sub divided along second dimension into m-1 portions and so on –New node joins CAN at a random portion associated with its landmark ordering Result –Co-ordinate space not uniformly populated –Uneven distribution of size of zone spaces (future work!)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.