Presentation is loading. Please wait.

Presentation is loading. Please wait.

Ge Semiconductor Devices for Cryogenic Power Electronics - V

Similar presentations


Presentation on theme: "Ge Semiconductor Devices for Cryogenic Power Electronics - V"— Presentation transcript:

1 Ge Semiconductor Devices for Cryogenic Power Electronics - V
WOLTE 6 Ge Semiconductor Devices for Cryogenic Power Electronics - V ESA/ESTEC, Noordwijk, June 2004

2 Supported by NASA Glenn Research Center
R. R. Ward, W. J. Dawson, L. Zhu, R. K. Kirschman GPD Optoelectronics Corp., Salem, New Hampshire O. Mueller, M. J. Hennessy, E. K. Mueller MTECH Laboratories, Ballston Spa, New York R. L. Patterson, J. E. Dickman NASA Glenn Research Center, Cleveland, Ohio A. Hammoud QSS Group Inc., Cleveland, Ohio Supported by NASA Glenn Research Center

3 “Very Little of the Solar System (or the Universe) Is at Room Temperature.”

4 Temperatures for Spacecraft

5 Solar System Exploration
Fly-by, orbiters, landers, rovers, probes, penetrators Using conventional electronics in cold environments - Heating - Wake/sleep (where possible)

6 “Traditional” Spacecraft
COLD ENVIRONMENT CONVENTIONAL ELECTRONICS HEATING/COOLING SYSTEM TEMPERATURE CONTROL THERMAL INSULATION (HEAT STORAGE)

7 “Cold” Spacecraft CRYOGENIC ELECTRONICS COLD ENVIRONMENT

8 “Cold” Spacecraft Benefits
Eliminate heating, thermal control, isolation Reduce power, weight, size, cost, complexity Improve overall reliability Reduce disruption of environment Increase mission duration & capability

9 Development Program

10 Cryogenic Power Electronics
Active semiconductor devices for power circuits For spacecraft power management & actuator control Parameters Power ~10 W Temperature range 300 K to ~20 K Device types Diodes (P--N, 10 A, 300 V) JFETs (lateral, vertical) MISFETs (lateral, vertical) BJTs (vertical implanted) Based on Ge

11 Why Use Ge?

12 Why Ge Devices? Applications require operation to 30 – 40 K range
Ge devices of all types can operate to low cryogenic temperatures (~20 K or lower) Diodes Field-effect transistors (JFETs, MISFETs) Bipolar transistors Performance advantages P-N junction voltages are low Mobility is high

13 Ge Cryo Power Diodes

14 Ge Cryo Power Diodes P- - N Bulk Design
Metal P+ implant Guard ring(s) N– ( ) Metal N+ implant

15 Ge Diode - Forward I-V

16 Ge Diode - Forward I-V

17 Ge Diode - Forward I-V

18 Ge Diodes - Forward Voltage
Si data from literature

19 Ge Diodes - Forward Voltage
Si data from literature

20 Ge Diodes - Reverse Breakdown

21 Ge Diodes - Reverse Recovery

22 Ge Diodes - Reverse Recovery

23 Ge Diodes - Reverse Recovery

24 Ge Cryo Power Field-Effect Transistors

25 Ge Cryo Power JFET or MISFET
~1.3 mm G S D

26 Ge Cryo Power JFETs (Junction Field-Effect Transistors)

27 Ge JFET Cross-Section (n-channel)
Back gate contact Source Front gate P+ implant P+ substrate N epitaxial layer N+ implant Drain

28 Ge JFET at 300 K (n-channel)
ΔVGS = 1 V/step J 10 V

29 Ge JFET at 77 K (n-channel)
ΔVGS = 1 V/step 10 V

30 Ge JFET at 4 K (n-channel)
ΔVGS = 1 V/step 10 V

31 Ge JFET at 300 K (p-channel)
ΔVGS = 1 V/step JL2-01B-Q01, Quad JFET 50 V

32 Ge JFET at 77 K (p-channel)
ΔVGS = 1 V/step 50 V

33 Ge JFET at 4 K (p-channel)
ΔVGS = 1 V/step 50 V

34 Ge JFET Cross-Section (p-channel)
Back gate contact Source (N+ implant) N+ substrate P epitaxial layer P+ implant Drain Trench

35 Ge JFET at 300 K (p-channel)
ΔVGS = 2 V/step JL2-01B-Q01, Quad JFET 20 V

36 Ge JFET at 77 K (p-channel)
ΔVGS = 2 V/step 20 V

37 Ge JFET at 4 K (p-channel)
ΔVGS = 2 V/step 20 V

38 Ge Cryo Power MISFETs (Metal-Insulator-Semiconductor Field-Effect Transistors)

39 Lateral Ge MISFET Design (n-channel)
Substrate contact Source Gate (P+ implant) P substrate Gate dielectric N+ implant Drain

40 Ge MISFET at 300 K (n-channel)
ΔVGS = 1 V/step M31 20 V

41 Ge MISFET at 77 K (n-channel)
ΔVGS = 1 V/step 20 V

42 Ge MISFET at 4 K (n-channel)
ΔVGS = 1 V/step 20 V

43 Ge MISFET Switching - 50 kHz
~30 W Load

44 Ge MISFET Switching - 5 MHz
~30 W Load

45 Ge MISFET at 300 K (p-channel)
ΔVGS = 2 V/step M31 20 V

46 Ge MISFET at 77 K (p-channel)
ΔVGS = 2 V/step 20 V

47 Ge MISFET at 4 K (p-channel)
ΔVGS = 2 V/step 20 V

48 Vertical Ge MISFET Design (n-channel)
Drain Source Gate P+ implant P– substrate Gate dielectric N epi

49 Ge Vertical MISFET at 77 K (n-channel)
ΔVGS = 2 V/step 10 V

50 Ge Bipolar Junction Transistors

51 Ge Bipolar – Double-Implant, Vertical
Emitter Base N+ implant P implant N– substrate Collector N+ implant

52 Ge BJT at 77 K (npn) ΔIB = 1 mA/step 0.1 A 10 V

53 Ge BJT at 77 K (pnp) ΔIB = 2 mA/step 0.05 A 100 V

54 Summary Cryogenic power electronics is needed for spacecraft going to cold environments and for space observatories Temperatures may be as low as ~ K Used Ge Ge devices of all types can operate to deep cryogenic temperatures – to 20 K, as low as 4 K We developed Ge diodes, JFETs, MISFETs, BJTs specifically for cryogenic power applications Power to ~20 W

55 Continuing Development
Now developing cryogenic power devices based on SiGe Flexibility, compatibility, easier dielectric Two separate programs: NASA (spacecraft) and DARPA (motors & generators using superconductors) Temperature ranges: to ~20 K (NASA, medium power) and ~55 K (DARPA, higher power) HBTs, MOSFETs, IGBTs (NASA); diodes, thyristors (DARPA) Simulation, fabrication, evaluation Demonstrations of SiGe devices in ~ W power converters at cryogenic temperatures


Download ppt "Ge Semiconductor Devices for Cryogenic Power Electronics - V"

Similar presentations


Ads by Google