Presentation is loading. Please wait.

Presentation is loading. Please wait.

Context sensitivity for networked ontologies Igor Mozetič, Marko Grobelnik, Damjan Bojadžijev Jozef Stefan Institute Slovenia.

Similar presentations


Presentation on theme: "Context sensitivity for networked ontologies Igor Mozetič, Marko Grobelnik, Damjan Bojadžijev Jozef Stefan Institute Slovenia."— Presentation transcript:

1 Context sensitivity for networked ontologies Igor Mozetič, Marko Grobelnik, Damjan Bojadžijev Jozef Stefan Institute Slovenia

2 NeOn, Rome, 21 Mar 2006 JSI 2 text context explicitimplicit globallocal text I’m here who, where textexpl(context) text_1 context_1 +

3 NeOn, Rome, 21 Mar 2006 JSI 3 Overview Formalizing context Cyc Semantic Web C-OWL Probabilistic approaches JSI related work

4 NeOn, Rome, 21 Mar 2006 JSI 4 McCarthy [1993] AI: modelling of context and use in automated reasoning implicit -> explicit ist( context, proposition ) context = collection of assumptions (generalization of, partially known) entering and exiting, nesting, lifting, transcending, …

5 NeOn, Rome, 21 Mar 2006 JSI 5 Cyc [Lenat, Guha] Cyc KB = set of microtheories (Mt) Microtheory = set of axioms  shared assumptions, topic  internally consistent  localized (more efficient) reasoning  preconditions = context in which Mt is applicable

6 NeOn, Rome, 21 Mar 2006 JSI 6 Cyc (example) ist( NaiveStateChangeMt, isa( ?X, Freezing ) & outputsCreated( ?X, ?Obj ) => stateOfMatter( ?Obj, SolidStateMatter )) NaiveStateChangeMt domainAssumptions: forAll ?U isa( ?U, StateOfMatterChangeEvent ) => isa( ?U, CreationOrDestructionEvent )

7 NeOn, Rome, 21 Mar 2006 JSI 7 Context for Semantic Web [Guha et al] AISW scope, complexity of phenomena scale (comp. complexity), distributed sources, ease of use Aggregation from different sources. Issues: class differences property type differences point of view implicit time approximations

8 NeOn, Rome, 21 Mar 2006 JSI 8 C-OWL [Giunchiglia et al]: Contextualizing ontologies OntologiesContexts Global, shared model Encode common view Combining by import Global semantics Local models Encode each party’s view Combining by explicit mappings Local Models Semantics

9 NeOn, Rome, 21 Mar 2006 JSI 9 OWL: Global semantics for multiple (networked) ontologies shared model

10 NeOn, Rome, 21 Mar 2006 JSI 10 OWL: Global semantics for multiple (networked) ontologies shared model import

11 NeOn, Rome, 21 Mar 2006 JSI 11 C-OWL: Local model semantics local models

12 NeOn, Rome, 21 Mar 2006 JSI 12 C-OWL: Mappings contextualized ontology context

13 NeOn, Rome, 21 Mar 2006 JSI 13 C-OWL ontology is a pair: OWL ontology (target):  concepts  individuals  roles mappings (bridge rules):   equivalence   onto   into   compatible   incompatible

14 NeOn, Rome, 21 Mar 2006 JSI 14 C-OWL example OWL ontology (target) + mappings (bridge rules)

15 NeOn, Rome, 21 Mar 2006 JSI 15 C-OWL of any use? Import ontology vs. define context mappings? (diversity as defect vs. feature) Semantic Web = Web of Semantic links ? (context mappings) Discovering context mappings = core issue in building Semantic Web ?

16 NeOn, Rome, 21 Mar 2006 JSI 16 JSI related work Parametric temporal ontology Simultaneous ontologies User profiling Implicit document context (links)

17 NeOn, Rome, 21 Mar 2006 JSI 17 Temporal ontology Temporal algebra [Allen]:  event = temporal interval  relations: before, meets, starts, finishes, … week(now) day(sun)day(mon)meets startsfinishes

18 NeOn, Rome, 21 Mar 2006 JSI 18 Temporal ontology Temporal algebra [Allen]:  event = temporal interval  relations: before, meets, starts, finishes, … week(now)week(now+1) day(sun)day(mon)meets startsfinishes meets

19 NeOn, Rome, 21 Mar 2006 JSI 19 Temporal ontology Temporal algebra [Allen]:  event = temporal interval  relations: before, meets, starts, finishes, … week(now)week(now+1) day(sun)day(mon)meets startsfinishes day(now) day(now-1) meets day(now+1)meets

20 NeOn, Rome, 21 Mar 2006 JSI 20 Temporal reasoning Temporal algebra [Allen]:  event = temporal interval  relations: before, meets, starts, finishes, … week(now)week(now+1) day(sun)day(mon)meets startsfinishes day(now) day(now-1) meets equals day(now+1)meets ?

21 NeOn, Rome, 21 Mar 2006 JSI 21 Temporal reasoning Temporal algebra [Allen]:  event = temporal interval  relations: before, meets, starts, finishes, … week(now)week(now+1) day(sun)day(mon)meets startsfinishes day(now) day(now-1) meets equals day(now+1)meets day(mon) starts

22 NeOn, Rome, 21 Mar 2006 JSI 22 Temporal reasoning Temporal algebra [Allen]:  event = temporal interval  relations: before, meets, starts, finishes, … week(now)week(now+1) day(sun)day(mon)meets startsfinishes day(now) day(now-1) meets equals day(now+1)meets day(mon) starts

23 NeOn, Rome, 21 Mar 2006 JSI 23 Temporal reasoning Temporal algebra [Allen]:  event = temporal interval  relations: before, meets, starts, finishes, … week(now)week(now+1) day(sun)day(mon)meets startsfinishes day(now) day(now-1) meets equals day(now+1)meets day(mon) starts equals

24 NeOn, Rome, 21 Mar 2006 JSI 24 Parameterized temporal ontology Parameters:  now  order of magnitude  past - future now-1 now now+1 now+2 day week month year decade now = ? context

25 NeOn, Rome, 21 Mar 2006 JSI 25 News analysis earthquaketsunami News stream: the same?yet another one?

26 NeOn, Rome, 21 Mar 2006 JSI 26 A temporal model: Tsunami Earthquake Tsunami Search & RescueRebuilding ~minutes ~hours ~days~months ET S&R 25.dec 26.dec 27.dec 28.dec 29.dec 30.dec 31.dec 1.jan 2.jan 3.jan

27 NeOn, Rome, 21 Mar 2006 JSI 27 News analysis: Temporal model = Context earthquaketsunami News stream: model of tsunami provides context for subsequent events

28 NeOn, Rome, 21 Mar 2006 JSI 28 Summary Parameterized ontology Context determines parameters  when?  how long?  order of magnitude Temporal model  selected by events  provides context


Download ppt "Context sensitivity for networked ontologies Igor Mozetič, Marko Grobelnik, Damjan Bojadžijev Jozef Stefan Institute Slovenia."

Similar presentations


Ads by Google