Download presentation
Presentation is loading. Please wait.
Published byLinda Reeves Modified over 9 years ago
1
FLEX Study of ’-(ET) 2 AuCl 2 Hiori Kino ( National institute for materias science ) Hiroshi Kontani ( Nagoya Univ. ) Tsuyoshi Miyazaki ( National institute for materials science )
2
Motivation ’-(ET) 2 ICl 2 ’-(ET) 2 AuCl 2 * Structure ambient pressure under applied pressure --- Almost the same ET stacking--- AF insulator insulator superconductivityinsulator Why? *Taniguchi, et al., JPSJ 74, 1370 (2005).
3
Dimensionality of Fermi surfaces Quasi-1D Electronic structure (first-principles study by Miyazaki et al,) ’-(ET) 2 ICl 2 ’-(ET) 2 AuCl 2 Ambient pressure Applied pressure 3D2D
4
0GPa 4GPa 8GPa 12GPa16GPa20GPa Fermi surfaces ( tight binding fit ) a* c* b*
5
Q? higher dimensionality of Fermi surface stabilize AF phase in ’-(ET) 2 AuCl 2 ? Methods: Hamiltonian: tight binding model (ET dimer model) effective on-site (intra-dimer) Coulomb interaction Perturbation theory: FLEX-approximation
6
Results TNTN No SC phase U eff =0.5eV
7
Discussion AF SC Pressure Temperature ’-(ET) 2 ICl 2 Suppress (→1D) 2D Pressure Temperature AF ’-(ET) 2 AuCl 2 Enhance (2D→3D) Suppress (→1D) No SC phase Fermi surface nesting? U? a* c* b* TNTN
8
intralayer dimensionality temperature TNTN T SC interlayer dimensionality Discussion (2) TNTN Pressure AuCl2 Pressure ICl2
9
Fermi surfaces (extended zone) 12GPa 20GPa
10
Summary ’-(ET) 2 AuCl 2 AF phase is stabilized under applied pressures. Reason: Higher-dimensionality U → better FS nesting
11
Fermi surfaces ( 2D, b-axis-off ) 0GPa4GPa8Gpa 12GPa16GPa 20GPa a* c* →Destabilize AF?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.