Presentation is loading. Please wait.

Presentation is loading. Please wait.

NIR BITANSKY, OMER PANETH, ALON ROSEN ON THE CRYPTOGRAPHIC HARDNESS OF FINDING A NASH EQUILIBRIUM.

Similar presentations


Presentation on theme: "NIR BITANSKY, OMER PANETH, ALON ROSEN ON THE CRYPTOGRAPHIC HARDNESS OF FINDING A NASH EQUILIBRIUM."— Presentation transcript:

1 NIR BITANSKY, OMER PANETH, ALON ROSEN ON THE CRYPTOGRAPHIC HARDNESS OF FINDING A NASH EQUILIBRIUM

2 The Story Line GamesComplexityCrypto

3 Game Theory and Nash Equilibrium CooperateDefect Cooperate 2 \ 20 \ 3 Defect 3 \ 01 \ 1 [Nash 51]: a (mixed) equilibrium always exists Nash Equilibrium

4 The CS Perspective A (mixed) equilibrium always exists Can it be computed efficiently? “if your laptop can’t find it, then neither can the market.” [Kamal Jain, eBay]

5 How hard is finding a Nash Equilibrium?

6 CD C2 \ 20 \ 3 D3 \ 01 \ 1 Reduction ? ? ?

7 FNP FP 3SAT TFNP NASH

8 The Class PPAD [Papadimitriou 94] Totality is proved via “a parity argument in directed graphs” FP TFNP NASH PPAD

9 The Class PPAD [Papadimitriou 94] EOL PPAD Defined through its complete problem: END-OF-THE-LINE (EOL)

10 End of the Line Problem (EOL)

11 … … Exponential size graph:

12 CD C2 \ 20 \ 3 D3 \ 01 \ 1 Reduction? Reduction [Daskalakis-Goldberg-Papadimitriou 05], [Chen-Deng 05] PPAD and NASH [Papadimitriou 94]

13 FNP FP 3SAT PPAD NASH EOL BROUWER SPERNER FACTORING DLOG LWE ? Crypto:

14 PPAD is as hard as breaking indistinguishability obfuscation Cryptographic hardness in PPAD Today

15 The Story Line GamesComplexity Crypto

16 Program Obfuscation obfuscated program obfuscator

17 Ideal Obfuscation [Hada 00, Barak-Goldreich-Impagliazzo-Rudich-Sahai-Vadhan-Yang 01]

18 Hard EOL Instance from Ideal Obfuscation … … [Folklore, Abbot-Kane-Valiant 04]

19 Hard EOL Instance from Ideal Obfuscation [Folklore, Abbot-Kane-Valiant 04] … …

20 Ideal obfuscation is subject to strong lower bounds Hada 00 Barak-Goldreich-Impagliazzo-Rudich-Sahai-Vadhan-Yang 01 Goldwasser-Kalai 05 Bitansky-Canetti-Cohn-Goldwasser-Kalai-P-Rosen 14

21 Indistinguishability Obfuscation (IO) [Barak-Goldreich-Impagliazzo-Rudich-Sahai-Vadhan-Yang 01] Indistinguishability obfuscation

22 [Garg-Gentry-Halevi-Raykova-Sahai-Waters 13]: First candidate construction of IO Functional encryption, Deniable encryption, Multiparty key exchange, Efficient traitor tracing, Full Domain Hash, Adaptively secure 2-round MPC, Publicly verifiable delegation, Non- interactive witness indistinguishable proofs, Trapdoor permutations, Constant-rounds concurrent zero-knowledge… [GGHRSW 13, Sahai-Waters 14, … ]:

23 Main Theorem Assuming sub-exponentially secure IO, The EOL problem is hard. Should we believe in IO?

24 Hard EOL Instances … …

25 … … ……

26 Need To Prove … …

27 … … … …

28 … … … …

29 … … … …

30 … … … … … … … … … … Step 1: remove a random edge Step 2: modify a node with in-degree 0 Step 2 …

31 A Useful Lemma

32

33 Proof of Lemma (using ideas from [SW14]) using IO

34 Proof of Lemma using IO

35 Step 1 - Proof … … … … Step 1: remove a random edge

36 Step 2 - Proof … … … … Step 2: modify a node with in-degree 0 pseudorandom

37 Puncturable Pseudorandom Functions [Boneh-Waters 13, Boyle-Goldwasser-Ivan 13, Sahai-Waters 14]

38 Puncturable Pseudorandom Functions [Boneh-Waters 13, Boyle-Goldwasser-Ivan 13, Sahai-Waters 14]

39 Step 2 - Proof … … … … By IO and puncturing … … By Lemma

40 … … … …

41 The Problem of Going Backwards … … … … Step 2: modify a node with in-degree 0

42 Solution [Abbot-Kane-Valiant 04] Idea: reversible computation [Bennet 84] : Any sequential computation can be simulated in a reversible way, with low overhead

43 Reversible Computation ……

44 CD C2 \ 20 \ 3 D3 \ 01 \ 1 multi-linear maps lattices

45 Security of IO and Multi-Linear Maps Garg-Gentry-Halevi-Raykova-Sahai-Waters 13, Brakerski- Rothblum 14, Barak-Garg-Kalai-P-Sahai 14, Brakerski- Applebaum 15, Zimmerman 15, Pass-Seth-Telang 14, Gentry-Lewko-Sahai-Waters 14, Cheon-Han-Lee-Ryu-Stehlé 14, Boneh-Wu-Zimmerman 14, Gentry-Halevi-Maji-Sahai 14, Coron-Lepoint-Tibouchi 14, Gentry-Halevi-Gorbunov 15, Ananth-Jain 15, Bitansky-Vaikuntanathan 15 …

46 CD C2 \ 20 \ 3 D3 \ 01 \ 1 multi-linear maps lattices Thanks!


Download ppt "NIR BITANSKY, OMER PANETH, ALON ROSEN ON THE CRYPTOGRAPHIC HARDNESS OF FINDING A NASH EQUILIBRIUM."

Similar presentations


Ads by Google