Presentation is loading. Please wait.

Presentation is loading. Please wait.

Metal Hydroxide Ion Pairs: Solvation Trends, Charge Transfer, and Vibrational Stark Shift Modulation. Jonathan M. Voss, Brett M. Marsh, Jia Zhou, Etienne.

Similar presentations


Presentation on theme: "Metal Hydroxide Ion Pairs: Solvation Trends, Charge Transfer, and Vibrational Stark Shift Modulation. Jonathan M. Voss, Brett M. Marsh, Jia Zhou, Etienne."— Presentation transcript:

1 Metal Hydroxide Ion Pairs: Solvation Trends, Charge Transfer, and Vibrational Stark Shift Modulation. Jonathan M. Voss, Brett M. Marsh, Jia Zhou, Etienne Garand University of Wisconsin – Madison June 22, 2015

2 Only a few accounts of hydration of metal salts Mg 2+ NO 3 - by Asmis et al Cu 2+ OH - Mg 2+ OH - and Ca 2+ OH - : Johnson et al Motivation Asmis et al. J. Phys. Chem. A, 2013, 117, 7081-7090. B. M. Marsh, J. Zhou, E. Garand. J. Phys. Chem. A, 2014, 118, 2063-2071. C. J. Johnson, L. C. Dzugan, A. B. Wolk, C. M. Leavitt, J. A. Fournier, A. B. McCoy and M. A. Johnson, J. Phys. Chem. A, 2014, 118, 7590–7597. We wanted to extend our work to additional transition metals

3 Clusters generated by electrospray ionization of MSO 4 where M = Mn, Fe, Co, Ni, Cu, Zn. Scaled harmonic frequencies calculated at cam- B3LYP/def2TZVP level of theory Experimental B. M. Marsh, J. Zhou, E. Garand. J. Phys. Chem. A, 2014, 118, 2063-2071.

4 C. J. Johnson, L. C. Dzugan, A. B. Wolk, C. M. Leavitt, J. A. Fournier, A. B. McCoy and M. A. Johnson, J. Phys. Chem. A, 2014, 118, 7590–7597. B. M. Marsh, J. Zhou, E. Garand. Physical Chemistry Chemical Physics, 2014 (In Press) A Previous Study of MOH(H 2 O) +

5 Natural population analysis SCF difference plots Mn to Cu: decreases from +1.54e to +1.20e OH - decreases from -0.64e to -.32e The varying OH - charge alone is not enough to account for shifting frequency OH∙ vibrational frequency = 3570 cm -1 OH - vibrational frequency = 3556 cm -1 Need to consider the electric field induced on ligands B. M. Marsh, J. Zhou, E. Garand. Physical Chemistry Chemical Physics, 2014 (In Press) A Previous Study of MOH(H 2 O) + OHM -0.64e+1.54e -0.58e+1.46e -0.55e+1.41e -0.47e+1.31e -0.32e+1.20e -0.72e+1.61e

6 A Previous Study of MOH(H 2 O) + M 2+ O-O- R B. M. Marsh, J. Zhou, E. Garand. Physical Chemistry Chemical Physics, 2014 (In Press) OHM -0.64e+1.54e -0.58e+1.46e -0.55e+1.41e -0.47e+1.31e -0.32e+1.20e -0.72e+1.61e

7 MOH(H 2 O) n + with M = Mn Quasi-planar T Distorted tetrahedral B. M. Marsh, J. Zhou, E. Garand. Physical Chemistry Chemical Physics, 2014 (In Press)

8 MOH(H 2 O) n + with M = Mn, Fe Distorted trigonal planar Distorted tetrahedral B. M. Marsh, J. Zhou, E. Garand. Physical Chemistry Chemical Physics, 2014 (In Press)

9 MOH(H 2 O) n + with M = Mn, Fe, Co Bent trigonal planar Distorted tetrahedral B. M. Marsh, J. Zhou, E. Garand. Physical Chemistry Chemical Physics, 2014 (In Press)

10 MOH(H 2 O) n + with M = Mn, Fe, Co, Zn n=2 has trigonal planar geometry n=3 is tetrahedral in shape B. M. Marsh, J. Zhou, E. Garand. Physical Chemistry Chemical Physics, 2014 (In Press)

11 MOH(H 2 O) n + with M = Ni Planar T-shape Distorted square planar Square pyramidal Octahedral B. M. Marsh, J. Zhou, E. Garand. Physical Chemistry Chemical Physics, 2014 (In Press)

12 MOH(H 2 O) n + with M = Ni, Ca B. M. Marsh, J. M. Voss, J. Zhou, E. Garand., 2015 (In Preparation) C. J. Johnson, L. C. Dzugan, A. B. Wolk, C. M. Leavitt, J. A. Fournier, A. B. McCoy and M. A. Johnson, J. Phys. Chem. A, 2014, 118, 7590–7597.

13 MOH(H 2 O) n + with M = Cu B. M. Marsh, J. M. Voss, J. Zhou, E. Garand., 2015 (In Preparation) Trigonal planar-like Square planar

14 MOH(H 2 O) n + Trends Alkali metals redshift with hydration Mn and Fe remain constant Co, Ni, Cu, and Zn blueshift upon solvation Convergence towards ~ 3700 cm -1 Performed NPA in similar fashion as previous study of MOH(H 2 O) B. M. Marsh, J. M. Voss, J. Zhou, E. Garand., 2015 (In Preparation) C. J. Johnson, L. C. Dzugan, A. B. Wolk, C. M. Leavitt, J. A. Fournier, A. B. McCoy and M. A. Johnson, J. Phys. Chem. A, 2014, 118, 7590–7597.

15 Redshifting MgOH(H 2 O) n + MOHM-O n=11.84-0.901.723 n=21.83-0.911.740 n=31.82-0.911.789 n=41.81-0.891.833 B. M. Marsh, J. Zhou, E. Garand. Physical Chemistry Chemical Physics, 2014 (In Press)

16 Blueshifting CuOH(H 2 O) n + MOHM-O n=11.20-.321.754 n=21.29-0.431.741 n=31.40-0.641.811 n=41.42-0.671.814 B. M. Marsh, J. M. Voss, J. Zhou, E. Garand., 2015 (In Preparation) C. J. Johnson, L. C. Dzugan, A. B. Wolk, C. M. Leavitt, J. A. Fournier, A. B. McCoy and M. A. Johnson, J. Phys. Chem. A, 2014, 118, 7590–7597.

17 MOH(H 2 O) n + with M = Fe MOHM-O n=11.46-.581.717 n=21.45-0.621.755 n=31.50-0.671.778 n=41.52-0.701.818 B. M. Marsh, J. M. Voss, J. Zhou, E. Garand., 2015 (In Preparation) C. J. Johnson, L. C. Dzugan, A. B. Wolk, C. M. Leavitt, J. A. Fournier, A. B. McCoy and M. A. Johnson, J. Phys. Chem. A, 2014, 118, 7590–7597.

18 In-Situ Probe of Charge Transfer [Ru(bpy)(tpy)(OH)] 2+ B. M. Marsh, J. M. Voss, J. Zhou, E. Garand., 2015 (In Preparation) C. J. Johnson, L. C. Dzugan, A. B. Wolk, C. M. Leavitt, J. A. Fournier, A. B. McCoy and M. A. Johnson, J. Phys. Chem. A, 2014, 118, 7590–7597.

19 Conclusions Charge transfer plays multiple roles: Helps govern solvation processes in M 2+ OH - Modulates frequencies through Stark shifts M 2+ O-O- R


Download ppt "Metal Hydroxide Ion Pairs: Solvation Trends, Charge Transfer, and Vibrational Stark Shift Modulation. Jonathan M. Voss, Brett M. Marsh, Jia Zhou, Etienne."

Similar presentations


Ads by Google