Download presentation
Presentation is loading. Please wait.
Published byMarcus Randall Modified over 9 years ago
1
Workshop on The Future of Superheavy Element Research February 17 - 18, 2004 Gesellschaft f ü r Schwerionenforschung Darmstadt, Germany
2
116 115 114 113 112 111 Ds Mt Hs Bh Sg Db Rf Lr No Md Es Cf Fm One End of Nuclear Chart 162 152 SF + or EC -- 170 176 208 Pb + 64 Ni → 271 Ds + n 209 Bi + 64 Ni → 272 111 + n 209 Bi + 70 Zn →
3
RILAC Facility 18GHz ECR Ion Source RFQ-Linac CSM Acc. Tanks RILAC Acc. Tanks GARIS CSM Dec. Tank
5
RIKEN
7
MCP1 MCP2 SSD box PSD ions Focal Plane Detectors
8
New Rotating Target = 300 mm, = 2000 rpm cf. old one = 125 mm, = 1000 rpm Tested with 1p A 86 Kr beam
9
20 18 16 14 12 10 8 6 4 5 15 20 25 30 (v/v 0 )Z 1/3 q eq Bohr’s theorem 208 Pb 209 Bi 169 Tm 208 Pb 209 Bi 198 At 192 Bi 265 Hs 209 Bi 208 Pb 212 Ac 234 Bk 245 Fm 255 Lr 254 No 204 Fr 203 Fr 271 110 272 111 v0: Bohr velocity
10
system E BB E BB E BB MeV TmMeV TmMeV Tm 208 Pb + 58 Fe281 0.102 0 0.708191.6 0.044 5 1.5561.27 0.022 2 2.05 208 Pb + 64 Ni309 0.101 8 0.724222.4 0.047 9 1.5272.71 0.024 0 2.08 208 Pb + 70 Zn345 0.102 9 0.746260.0 0.051 8 1.4986.87 0.025 9 2.11 projectile target recoil compound nucleus Ep/EcnEr/Ecn p/ cn r/ cnB p/B cnB r/B cn 4.5863.1284.5862.0000.3460.759 4.2503.0594.2502.0000.3480.732 3.9712.9933.9712.0000.3540.707 energy separator velocity separator gas-filled separator
11
272 110 271 110 267 Hs 263 Sg 259 Rf 255 No 251 Fm 255 Md 11 22 33 44 55 208 Pb + 64 Ni → 271 Ds + n
12
11 10 9 9 9 9 98 8 8 7 11 22 33 44 55 11 10 8 8 E (MeV) 5 0 5 0 5 0 5 0 5 0 Counts/100keV 11 22 33 44 55 Tdecay Counts/bin 0 1000s 10s0.1s1ms 5 0 5 1000s 10s0.1s1ms 1000s 10s0.1s1ms 1000s 10s0.1s1ms 1000s 10s0.1s1ms 5 0 5 0 5 0 10 s ab =2.9ms =120ms =77ms =1.0s =3.7s =220s
13
NucleinRIKENnGSIT 1/2 271 11011 1.63 +0.44 -0.29 msimproved 271m 1103269 +56 -21 msconfirmed 267 Hs121352 +13 - 8 msimproved 267m Hs100.80 +3.8 -0.38 spossible Eopt( 64 Ni)=314MeV Eopt(cm)=240MeV Summary of 208 Pb + 64 Ni → 271 110 + n reaction
14
273 111 272 111 268 Mt 264 Bh 260 Db 256 Lr 252 Md 256 No 1 (14) 2 (14) 3 (12) 4 (11) 55 55 SF (2) SF (1) 209 Bi + 64 Ni → 272 111 + n
15
273 111 272 111 268 Mt 264 Bh 260 Db 256 Lr 252 Md 256 No 1 (14) 2 (14) 3 (12) 4 (11) 55 55 260 Rf 264 Sg SF (2) SF (1) possibility not excluded experimentally 209 Bi + 64 Ni → 272 111 + n
16
0 5 89101112 0 5 11 22 33 44 55 11 22 33 44 55 10000s100s1s10ms 100 s Tdecay 254 Md ← 256 Lr ← 260 Db ← 264 Bh ← 268 Mt ← 272 111 =5.5ms =30ms =1.3s =8.2s =26s
17
RIKENGSI Nuclei n T 1/2 EE E fiss. n T 1/2 E MeV 272 111 14 3.8 +1.4 - 0.8 ms10.2~11.56 6 1.6 +1.1 -0.5 ms10.8~11.05 268 Mt 14 21 +8 - 5 ms9.4~10.77 6 42 +29 -12 ms10.1~10.3 264 Bh 14 0.89 +0.31 - 0.19 s8.86~9.83 208 206 6 1.0 +0.7 -0.3 s9.1~9.6 260 Db 12 5.7 +2.3 - 1.3 s8.35~9.4 231 6 2.6 +1.8 -0.8 s9.1~9.2 256 Lr 8 18 +10 - 5 s8.35~8.65 4 33 +27 -10 s8.4~8.5 Eopt( 64 Ni)=319MeV Eopt(cm)=244MeV Summary of 209 Bi + 64 Ni → 272 111 + n reaction
18
period9/5/2003 ~ 12/29/2003 Beam Energy5.03 AMeV 348 MeV at target half depth Total Dose1.21x10 19 Target Thickness1.37x10 18 /cm 2 (0.48 mg/cm 2 ) _GARIS0.8(assumption) (1-ev.)7.5x10 -38 cm 2 upper limit (1 )1.38x10 -37 cm 2 Irradiation time1390 Hours(58 Days / 74 Days) Beam Intensity2.42x10 12 /s(0.4 p- A) Summary of 209 Bi + 70 Zn experiment
19
100 102104106108110112114 Atomic Number 1b1b 1nb 10nb 100nb 100pb 10pb 1pb 0.1pb 208 Pb, 209 Bi(HI,1n) reaction present work
21
Z Ecm ( MeV) Ex (MeV) KUTYMøllerMy & Sw 110240.113.217.416.0 111244.214.118.016.4 112 113261.112.515.513.8
22
Z Ecm ( MeV) Ex (MeV) Ecm – E 2nd_fission ( MeV) KUTYMøllerMy & SwKUTYMøllerMy & Sw 110240.113.217.416.0-0.12.91.4 111244.214.118.016.40.73.61.9 112 113261.112.515.513.8-0.52.50.7
23
K. MorimotoRIKEN D. KajiCNS H. HabaRIKEN E. IdeguchiRIKEN R. KanumgoRIKEN K. KatoriRIKEN H. KouraRIKEN T. OhnishiRIKEN A. OzawaRIKEN T. SudaRIKEN I. TanihataRIKEN A. YonedaRIKEN A. YoshidaRIKEN H. KudoNiigata U. K. SuekiUniv. of Tsukuba F. Tokanai Yamagata U. H. XuIMP Lanzhou Y.-L. ZhaoIHEP Beijing T. ZengPeking U. A. V. YereminFLNR JINR J. PeterCaen/GANIL
24
February 17, 2004 FEST COLLOQUIUM : On the Occasion of Sigurd Hofmann’s 60th Birthday What Do We Know about SHE - Expectations and RealityYuri Oganessian February 18, 2004 Chair:Gottfried Münzenberg Welcome Walter Henning Theory of Superheavy Nuclei: Old and New - Open ProblemsWalter Greiner Chemistry of Spherical Superheavy Elements - The Road to SuccessHeinz Gäggeler Superheavy Element Research at Berkeley Ken Gregorich Possibilities of the RF Nuclear Center Arzamas-16´ in Producing Pure Actinide Isotopes for Science and Applications Stanislav Vesnovskii In Beam Studies of SHE at High Beam Intensities Matti Leino Superheavy-Element Experiments at RIKEN Kosuke Morita Studies of SHE at GANILChristelle Stodel Heavy Element Research at IMP LanzhouWenlong Zhan Heavy Element Research with Laser Spectroscopy and Buffer Gas Traps Hartmut Backe Efficient Production of Intensive Beams of Rare Isotopes Georgy Gulbekian Steps towards an Optimized Linac for SHE Production at GSI Ulrich Ratzinger Studies of SHE at High Beam Intensities Sigurd Hofmann Closing Remarks Walter Henning
25
GSI SHIP
26
JINR/FLNR DUBNA Gas-Filled Separator
27
JINR/FLNR DUBNA
28
LBNL BGS
29
GANIL LISE (Wien Filter)
30
Z=110 に対する計算値
31
(v/v 0 )Z 1/3 q eq 2004 年 1 月 9 日於京都大学理学部物理学第二教室
32
Pb Bi Po At Rn Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt 110 111 112 113 169 Tm( 40 Ar,5n) 204 Fr 169 Tm( 40 Ar,6n) 203 Fr 169 Tm( 48 Ca,5n) 212 Ac 208 Pb( 40 Ar,3n) 245 Fm 208 Pb( 48 Ca,2n) 254 No 209 Bi( 48 Ca,2n) 255 Lr 140 Ce (58 Fe,p5n) 192 Bi 140 Ce( 64 Ni,p5n) 198 At 208 Pb( 58 Fe,n) 265 Hs 208 Pb( 64 Ni,n) 271 110 209 Bi( 64 Ni,n) 272 111
33
v/v 0 Transmission
34
Experimental conditions Beam 64 Ni0.4 ~ 1 p A Total dose4.0 x 10 18 Target 208 Pb190 ~ 250 g/cm 2 (98% enriched) evaporated on 30 g/cm 2 C covered by 10 g/cm 2 C B (GARIS)2.05 Tm P (GARIS)75Pa Counting rate10 ~ 20cps
35
Summary of the measurement in year 2002. 208 Pb( 64 Ni,n) 271 110 reaction datedaysE in Dose (10 18 ) number of events T av ( g/cm 2 ) (pb) 12.07- 25.07143101.012301.8 +4.1 -1.5 25.07- 01.0883130.632509.0 +8.1 -5.1 19.09- 22.0943130.411906.4 +15 -5.3 24.09- 28.0953160.9722016 +8.3 -6 28.09- 01.1043200.40210< 9.0 09.11- 11.1133200.60210< 6.4 11.11- 12.1123160.2223019 +26 -13 E in :energy from the accelerator. T av : average target thickness Total 40 4.0 14 2004 年 1 月 9 日於京都大学理学部物理学第二教室
36
11 22 33 44 55 7 8 91011 E (MeV) 1 10 -1 10 -2 10 -3 10 -4 10 10 2 10 3 10 -5 T decay (s)
37
(pb) E( 64 Ni) /MeV RIKEN GSI 208 Pb + 64 Ni → 271 110 + n statistical (1 ) errors energy loss in the target
38
1 271 110 2 267 Hs 3 263 Sg 4 259 Rf 5 255 No Ep TTEETTEETTEETTEETTEE #MeVmsMeVmsMeVmsMeVs s 1Ju3107.549.91b40.199.83a2.569.16b13.828.78a411.28.78b 2Ju3132.2010.73a68.409.82a17.68.56b3.138.87a394.78.87a 3Ju31346.010.44a1158.69.73a5998.99.31a 4Ju31387.110.33a 5Sp3164.6310.73b172.39.82b675.09.13a3.628.89a0.828.89a 6Sp316238.710.71a65.989.86b48.659.09b2.718.76b58.48.76a 7Sp3161.7410.47b159.49.97b718.79.04a0.438.87b241.58.87a 8Sp3161.3610.48b11.729.82a404.09.15b1.168.88a167.28.88b 9Sp3161.3110.51b58.969.83b959.08.83a2.148.42a 10Sp3160.05710.73a147.49.83a1322.59.19b9.148.90a 11Sp3163.5910.63a18.009.68b430.09.23a0.638.94b296.98.94b 12Sp3163.8010.65b39.389.89a650.39.30b0.418.86a 13No3161.6910.70a101.689.90b385.99.23a 14No3160.9210.69a46.539.91a1751.09.30b3.445.94b
39
Experimental conditions Beam 64 Ni0.7 ~ 1.8 p A Total dose1.30 x 10 19 Target 209 Bi210 ~ 310 g/cm 2 evaporated on 30 g/cm 2 C covered by 10 g/cm 2 C B (GARIS)2.05 Tm P (GARIS)75Pa Counting rate2 ~ 10cps
40
Summary of the measurement in year 2003. 209 Bi( 64 Ni,n) 272 111 reaction datedaysE in Dose (10 18 ) n T av ( g/cm 2 ) (pb) 12.02- 25.02143233.233101.4 +1.2 - 0.8 26.02- 28.0233231.022703.2 +4.3 - 2.1 07.04- 19.05133232.542902.4 +1.8 - 1.2 23.04- 30.0483262.50300<1.1 30.04- 08.0583202.032502.6 +2.3 - 1.5 09.05- 12.0543231.522802.1 +2.7 - 1.3 E in :energy from the accelerator. T av : average target thickness Total 50 12.6 14
41
CN 272 111 268 Mt 256 Lr 260 Db 264 Bh 252 Md 17-Feb-2003 4.4 ms 11.04 MeV (PSD) 13.0 ms 10.68 MeV (PSD) 1.45 s 9.60 MeV (PSD) 10.88 s 9.05 MeV (PSD) 21.9 s 8.37 MeV (PSD) E proj =323MeV CN 272 111 268 Mt 256 Lr 260 Db 264 Bh 252 Md 17-Feb-2003 11.0 ms 11.08 MeV (PSD+SSD) 9.2 ms 10.36 MeV (PSD) 1.38 s 9.81 MeV (PSD+SSD) 1.93 s 9.17 MeV (PSD+SSD) 11.9 s 8.39 MeV (PSD+SSD) 14.9 ms 11.56 MeV (PSD+SSD) CN 272 111 268 Mt 256 Lr 260 Db 264 Bh 252 Md 20-Feb-2003 122 ms 1.12 MeV (PSD) escape 21.8 ms 9.85 MeV (PSD) 0.51 s 9.34 MeV (PSD) 33.5 s 8.65 MeV (PSD) 209 Bi( 64 Ni,n) 272 111 1st 2nd 3rd
42
CN 272 111 268 Mt 260 Db 264 Bh 26-Feb-2003 7.11 ms 10.82 MeV (PSD+SSD) 0.715 ms 10.28 MeV (PSD) 0.54 s 9.57 MeV (PSD) 1.71 s 231 MeV (PSD+SSD) E proj =323MeV CN 272 111 268 Mt 256 Lr 260 Db 264 Bh 26-Feb-2003 1.42 ms 11.25 MeV (PSD) 36.6 ms 10.43 MeV (PSD+SSD) 1.87 s 9.66 MeV (PSD+SSD) 1.52 s 9.40 MeV (PSD) 2.82 ms 11.31 MeV (LG) CN 272 111 268 Mt 256 Lr 260 Db 264 Bh 8-Apr-2003 44 ms 10.78 MeV (PSD+SSD) 0.44 s 9.58 MeV (PSD) 48.46 s 8.81 MeV (PSD) 209 Bi( 64 Ni,n) 272 111 S.F. 6th 5th 4th
43
CN 272 111 268 Mt 264 Bh 15-Apr-2003 8.89 ms 10.96 MeV (PSD+SSD) 26.18 ms 2.76 MeV (PSD)esc 0.97 s 208 MeV (PSD) E proj =323MeV CN 272 111 268 Mt 256 Lr 260 Db 264 Bh 252 Md 14-Apr-2003 1.17 ms 10.58 MeV (LG) 38.33 ms 10.35 MeV (PSD) 3.6 ms 9.31 MeV (PSD) 4.87 s 9.01 MeV (PSD) 45.84 s 8.50 MeV (PSD) 5.11 ms 11.06 MeV (PSD) CN 272 111 268 Mt 256 Lr 260 Db 264 Bh 252 Md 16-Apr-2003 19.1 ms 10.43 MeV (PSD) 1.34 s 9.50 MeV (PSD) 3.69 s 9.10 MeV (PSD) 7.87 s 8.41 MeV (PSD) 209 Bi( 64 Ni,n) 272 111 S.F. 9th 8th 7th
44
CN 272 111 268 Mt 256 Lr 260 Db 264 Bh 5-May-2003 0.77 ms 10.85 MeV (PSD+SSD) 32.4 ms 10.34 MeV (PSD) 1.91 s 8.87 MeV (PSD+SSD) 21.04 s 8.503 MeV (PSD) E proj =320MeV 30-Apr-2003 6.92 ms 11.00 MeV (PSD+SSD) CN 272 111 268 Mt 256 Lr 260 Db 264 Bh 252 Md 5-May-2003 35.5 ms 10.58 MeV (PSD) 1.0 s 9.85 MeV (PSD) 1.14 s 9.14 MeV (PSD) 38.62 s 8.47 MeV (PSD+SSD) 209 Bi( 64 Ni,n) 272 111 CN 272 111 268 Mt 264 Bh 1.0 ms 10.21 MeV (PSD) 8.8 ms 10.03 MeV (PSD+SSD) 4.93 s 206 MeV (PSD+SSD) S.F. 12th 11th 10th
45
CN 272 111 268 Mt 256 Lr 260 Db 264 Bh 252 Md 12-May-2003 4.5 ms 11.08 MeV (PSD+SSD) 3.35 ms 10.28 MeV (PSD) 0.81 s 9.63 MeV (PSD) 2.42s 9.131 MeV (PSD+SSD) 6.85 s 8.63 MeV (PSD) E proj =323MeV 8-May-2003 CN 272 111 268 Mt 256 Lr 260 Db 264 Bh 6.84 ms 11.01 MeV (PSD+SSD) 37.2 ms 9.40 MeV (PSD) 1.23 s 9.56 MeV (PSD+SSD) 0.33 s 8.29MeV (PSD+SSD) 209 Bi( 64 Ni,n) 272 111 14th 13th
47
11 22 33 44 55 8.0 9.0 10.0 11.0 12.0 1 10 -1 10 -2 10 -3 10 -4 10 10 2 T decay (s) E (MeV) 254 Md ← 256 Lr ← 260 Db ← 264 Bh ← 268 Mt ← 272 111
49
272 110 *273 111 * CN Q-valueExopt.CN Q-valueExopt. MeV KUTY-227.013-230.113.9 Møller 95-222.717.3-226.217.8 My. & Sw. 96-224.115.9-227.816.2 Optimum excitation energies for 1n evaporation channel
50
213 Fr 6.775 MeV 4p transfer 211 Po 7.450 MeV pn transfer 211m Po 7.275 MeV pn transfer 212 At 7.679 MeV 2pn transfer 212m At 7.837,7.897 MeV 2pn transfer 213 Rn 8.088 MeV 3pn transfer 214 Fr 8.426 MeV 4pn transfer 214m Fr 8.546, 8.478 MeV 4pn transfer 199 At 6.643 MeV p4n evap. 196 Po 6.520 MeV 4n evap. 197 Po 6.281 MeV 3n evap. 198 Po 6.182 MeV 199 Po 6.058 MeV 200 Po 5.862 MeV 197m Po 6.383 MeV 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.5 E (MeV) 400 300 200 100 0 Counts/10keV 140 Ce + 64 Ni evaporation residues 209 Bi + 64 Ni transfer products 209 Bi Nat. Ce 64 Ni to GARIS system check & energy calibration RARF_PAC 02Jul2003
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.