Download presentation
Presentation is loading. Please wait.
Published byAshlie Merritt Modified over 9 years ago
1
Review of Polarized lepton-nucleon scattering s z = = J q + J g = + L q + G + L g K. Rith, HERA-III, München, 18.12.2002
2
Spin-dependent Deep-Inelastic Lepton-Nucleon Scattering Quarks Nucleon 1/2 ~ q + Quarks Nucleon 3/2 ~ q - Polarised: q f (x):=q f + (x) - q f - (x) q f = q f (x) dx 1/2 - 3/2 g 1 Asymmetry: A 1 = g 1 (x) := f z f 2 q f (x) 1/2 + 3/2 F 1 Unpolarised: q f (x):=q f + (x) + q f - (x) F 1 (x) := f z f 2 q f (x)
3
SU(3): 2 relations q 3 = u - d = g A /g V = F + D = 1,2573 Neutron-decay q 8 = u + d - 2 s = 3F - D = 0,579 , -decay q 0 = = u + d + s = + 9 I 1 p,(n) (Q 2 )= [ q 3 + q 8 ] C NS (Q 2 ) + C S (Q 2 ) + 2n f G C G (Q 2 ) - Integrals and Sum Rules I 1 := g 1 (x)dx; 18 I 1 p,(n) = 4(1) u +1(4) d + s ? QCDQCD Axial Anomaly Ellis-Jaffe S.R.: s = 0 q 8 = I 1 p =(1/12)[ q 3 + (5/3) q 8 ] C(Q 2 ) 0,175 (at Q 2 10 GeV 2 ) Bjorken Sum Rule: 6(I 1 p - I 1 n ) q 3 = g A /g V
4
A 1 g 1 /F 1 - Proton g 1 p /F 1 p well known for x 10 -3 Excellent agreement between all experiments g 1 p /F 1 p (within errors) independent of Q 2 ; Q 2 dependence of g 1 and F 1 very similar = f(x) Extrapolation to x 0 for Q 2 = Q 0 2 ?
5
g 1 (x)/F 1 (x) - Deuteron
6
g 1 (x) - Proton, Deuteron
7
A 1 (x), g 1 (x) - Neutron from 3 He 3 He: good approximation for polarized n-Target, = 0 QPM 18 g 1 n (x) ~ u(x) +4 d(x) < 0 Expt. d(x) u(x) p p n 3 He
8
Gluons G Rest ? Orbital angular momenta L q, g xg 1 (x) - world data Integrals at Q 0 2 = 2,5 GeV 2, QCD analysis of Q 2 dependence and SU(3): = u+ d+ s 0,20 0,04 .. ? ?
9
Q 2 - dependence of g 1 (x,Q 2 ) Q 2 - dependence in agreement with NLO QCD parameterisation Data still insufficient for reliable QCD analysis and determination of spin-dependent gluon distribution G(x)
10
NLO QCD (MS) fit Assumptions: - Flavour symmetric spin dependent sea - u v and d v constraint by F and D (SU(3) symmetry) Results for Q 0 2 = 4 GeV 2 : u v 0.73.....0.86 ( 0.10) d v -0.40...-0.46 ( 0.10) q s -0.04...-0.09 0.14...0.20 G 0.68...1.26 BB: Blümlein, Böttcher hep/ph 0203155 LSS: Leader et al., hep/ph 0111267 GRSV: Glück et al., hep/ph 0011215 AAC: Goto et. Al., hep/ph 0001046
11
g 2 (x) g 2 (x,Q 2 ) = - g 1 (x,Q 2 ) + g 1 (z,Q 2 ) dz/z + g 2 (x,Q 2 ) = g 2 WW (x,Q 2 ) + g 2 (x,Q 2 ) ~ ~ Quark-Gluon Correlation (Twist-3 Operator) E155x, hep-ex/0204028 Further improvement by HERMES and COMPASS very unlikely x n g 2 (x)dx = n/(n+1) (-a n +d n ) x n g 1 (x)dx = a n
12
A T, b 1 and b 2 - deuteron Deuteron is spin-1 target V = P z = p + - p -, P z 1 T = P zz = p + + p - - 2p 0, -2 P z z +1 More structure functions Proton Deuteron F 1 z q 2 [q + + q - ] z q 2 [q + + q - + q 0 ] F 2 2xF 1 2xF 1 g 1 z q 2 [q + - q - ] z q 2 [q + - q - ] b 1 z q 2 [2q 0 - (q + + q - )] b 2 2xb 1 meas = u [1 + P b VA + T A T ] A g 1 /F 1 [ 1 + T A T ] A T b 1 /F 1
13
The HERMES polarised internal gas target
14
A T, b 1 and b 2 - deuteron First measurement, only possible with atomic gas target Model: K. Bora, R.L. Jaffe, PRD 57 (1998) 6906
15
A T, b 1 and b 2 - deuteron Deuteron is spin-1 target A T 10 -2 little impact on det. of g1 b 1 d is sizeable ! and interesting by itself related to - nuclear binding - D-state admixture - diffractive nuclear shadowing - nuclear excess pions in D - VMD + double scattering - See e.g.: - P. Hoodboy et al., N.P. B312 (89) 571 - R.L. Jaffe & A. Manohar N.P. B321 (89) 343 - X. Artru & M. Mekhfi, Z. Phys. C45 (90) 669 - N.N. Nikolaec & W. Schäfer, P.L. B398 (97) 245 - J. Edelmann et al., Z. Phys. A357 (97) 129, P.R. C57 (98) 3392 - K. Bora & R.L. Jaffe, P.R. D57 (98) 6906 -
16
Spin-dependent quark distributions from semi-inclusive asymmetries Leading hadron originates with large probability from struck quark D(z):= Fragmentation function = E - E‘ z = E h /
17
Semi-inclusive asymmetries-1 z q 2 q(x) D q h (z) A 1 h (x,z) = z q 2 q(x) D q h (z) z q 2 q(x) D q h (z) q(x) = z q‘ 2 q‘(x) D q‘ h (z) q(x) Quark-‘Purity‘ P h q Different targets and hadrons h : Solve linear system for Q with A = (A 1,p, A 1,d, A 1,p , A 1,d , A 1,p K ) A = P Q P.L. B464 (1999) 123 In leading order:
18
Semi-inclusive asymmetries from Deuteron ,K, p asymmetries identified with RICH Hadrons Pions Kaons Statistics sufficient for 5-parameter-fit Q = ( u(x)/u(x), d(x)/d(x), u(x)/u(x), d(x)/d(x), s(x)/s(x) )
19
Purities Shaded bands: systematic uncertainties Adequate degree of orthogonality : - u versus d from h + - valence versus sea from hadron charge - u versus d from h - Kaons have about 10% sensitivity to the strange sea (Probability that observed hadron originates from quark of type f)
20
Extracted quark-polarisations Polarisation of sea-quarks small and compatible with 0 No direct evidence for a negative polarisation of strange- quarks Results for NLO analysis very similar !
21
Extracted spin-dependent quark distributions u > d ? s < 0 ? The HERMES data are consistent with flavour symmetry of spin-dependent sea Data with much higher statistical accuracy urgently needed
22
Prospects for spin-dependent quark distributions COMPASS data will extend to lower x-values Need high statistics data from both LiD and NH 3
23
The gluon polarisation G/G Method: Photon-Gluon-Fusion t h/2m q qqqq Charm-production Pairs of hadrons h + h - with high transverse momenta c c c J/ e +, + e -, - ptpt g ** c c c D D ** g ** ( ) g h1h1 h2h2 (Hard scale: mass of c-quark) (Hard scale: p t )
24
Gluon polarisation G/G 3 main contributions to *p h + h - X : p q q q q q q V h2h2 h1h1 h1h1 h1h1 h2h2 h2h2 ** ** ** g g QCDCVMDPGF A VDM 0.5 q/qA VDM = 0 A PGF - G/G ? Relative contributions: Monte Carlo simulation - PYTHIA but: applicable at HERMES energies ?
25
Gluon polarisation G/G Asymmetry is negative From this: G/G = 0.41 0.18 0.08 ( G/G) G(x) dx 0,6 ..... small, COMPASS RHIC = 0.17 2006 P.R.L. 84 (2000) 2584
26
Gluon polarisation G/G COMPASS : N D 0 X ( h + h - X) A 0.04 SLAC-E161: p D X A cc 0.006
27
Orbital angular momentum contributions L q,g to nucleon spin ? = + L z q + G + L z g 0,10 > 0,6 ‘No one knows how to measure it‘ (R. Jaffe) one hope: Exclusive processes, Generalised parton distributions (GPDs) pp p p ? ** ** DVCS , K, , , X.Ji: J q = + L z q = lim dx x [H(x, ,t) + E(x, ,t)] t 0
28
Orbital angular momentum contributions L q,g ? Example: DVCS (Interference of DVCS and Bethe-Heitler) Azimuthal asymmetries: beam polarisation, beam charge, target polarisation P.R.L. 87 (2001) 182001 P.R.L. 87 (2001) 182002 Hermes CLAS
29
DVCS HERMES Recoil-Detector Expected accuracies for 2 years of data taking
30
g 1 = - longitudinal quark spin, , q 5 q Transverse quark polarisation, ‘Transversity‘ h 1 Complete description of nucleon in leading order QCD: 3 distribution functions f 1 = Quark momenta, q q h 1 = - transverse quark spin, , q 5 q Importance of h 1 measurement: coupling to gluons smaller than in longitudinal case Q 2 evolution is weaker QCD test Redistribution of ang. moment. between quarks and gluons is smaller: < < 1 Lattice QCD: = 0,18(10) and = 0,56(9) h 1 is chiral odd, can only be measured in conjunction with other chiral odd distribution (pol. Drell-Yan) or fragmentation function (SIDIS)
31
P.R. D64 (2001) 097101 Transverse quark polarisation, ‘Transversity‘ h 1
32
‘Transversity‘ h 1 - Model calculations A UL sin S L (M/Q) z a 2 x [h L a (x) H 1 a (z) - x h 1L a (x) H a (z)/z +....] - S T z a 2 x h 1 a (x) H 1 a (z) S L >> S T Collins fragmentation function 0.33 z Example: Quark Soliton Model Efremov et al., Eur. Phys. J. C24 (2002) 407 Need measurements with transverse target polarisation
33
Azimuthal asymmetries: Collins vs Sivers effect 2 different possible sources for azimuthal asymmetry: product of chiral-odd transversity distribution h 1 (x) and chiral-odd fragmentation function H 1 (z) (Collins) product of T-odd distribution function f 1T and familiar unpolarised fragmentation function D 1 (z) (Sivers) Longitudinally polarised target: Collins and Sivers effect indistinguishable Transversely polarised target: Collins andSivers distinguishable Lepton Targetspin Hadron lsls lhlh moment; moment
34
Prospects for h 1 measurements, HERMES & COMPASS Deuteron (LiD) COMPASS: Projection for 12 days LiD, (h 1 = g 1 ) SMC magnet L = 4.3 10 37 cm -2 per day E = 160 GeV x x e a 2 h 1 a (x) HERMES: Expected accuray for 2 years of data taking with transversely polarised proton target V.A. Korotkov et al., Eur. Phys. J. C18 (01) 639
35
Prospects HERMES (2002-2006): Transversaly polarised target - h 1, g 2 unpolarised high density target: DVCS - L q COMPASS (2002 - ? ): Full polarisation program, especially G RHIC (2002 - ?) [p p W X, jets]: u(x), d(x), u(x), d(x), G SLAC-E161 (2003 - ?) [ p D X]: G Detailed investigation of h 1 and GPDs via exclusive processes requires a new generation of polarised lepton nucleon scattering experiments with high luminosity and high resolution like ELFE, TESLA-N, EVELIN, JLAB-12GeV
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.