Download presentation
Presentation is loading. Please wait.
Published byClifford Cobb Modified over 9 years ago
1
Cryptography Lecture 2 Arpita Patra
2
Recall >> Crypto: Past and Present (aka Classical vs. Modern Cryto) o Scope o Scientific Basis (Formal Def. + Precise Assumption + Rigorous Proof) o End-users >> Secure Communication in Secret Key Setting Secret Key Encryption (SKE) >> Learn From the Blunders of Classical SKE o Algorithms of SKE (in general in crypto) must be PUBLIC o Secret Key Space Must be large enough to fail brute force o No ad-hoc algorithm without definition and proof
3
Today’s Goal -Do Secure Communication in a ‘modern’ way ditching the ‘classic’ approach o Formulate a formal definition (threat + break model) o Identify assumptions needed and build a construction o Prove security of the construction relative to the definition and assumption
4
Secure Communication in Private Key Setting o Secret key k shared in advance (by “some” mechanism) k k ?? m o m is the plain-text EncryptionDecryption mc o c is the cipher-text (scrambled message) m Need: An encryption scheme (Gen, Enc, Dec) - Private (Secret) Key Encryption- Keys are private to the sender and the receiver - Symmetric Key Encryption- The same key is used for encryption and decryption
5
Syntax of Secret Key Encryption (SKE) 1.Key-generation Algorithm: Gen() 2. Encryption Algorithm: Enc k (m) 3. Decryption Algorithm: Dec k (c) > MUST be a Randomized algorithm > Outputs a key k chosen according to some probability distribution. > Deterministic/Randomized algorithm > c Enc k (m) when randomized and c:=Enc k (m) when deterministic > Usually deterministic > Outputs m:= Dec k (c)
6
Syntax of SKE > Set of all possible keys output by algorithm Gen 1.Key space ( K ): 2. Plaintext / message space ( M ): > Set of all possible “legal” message (i.e. those supported by Enc) 3. Ciphertext space ( C ): > Set of all cipher-texts output by algorithm Enc SKE is specified using (Gen, Enc, Dec) and M
7
Formal Definition of Security Two components of a security definition: Break: Threat:>> Who is your threat? >> Who do you want to protect from? >> Cultivate your enemy a.k.a adversary in crypto language. >> Look out in practical scenarios / be an adversary >> Unless you know your adv, no hope of defeating him >> What are you afraid of losing? >> What do you want to protect? >> If you don’t know what to protect then how to do you when or if you are protecting it?
8
Threat Model - How powerful - What are his capabilities (in terms of attacking a secure communication protocol)? computationally? > Best is to have no assumption on the computing power of the adv. a.k.a unbounded powerful adversary > Give him any so-called hard problem (factoring etc), he solves in no time > Strongest adversary that we can think of in terms of computing power k k ?? Enc m c > Attacker/adv. can eavesdrop/tap the ciphertext during transit- Passive or Eavesdropper Can you think of a smarter attack? > Ciphertext Only Attack (COA)
9
Threat Model - Can sample random coins? (deterministic or randomized) > Randomness is absolute necessity in Crypto; it is practical and Good guys use randomness often. Why not adversary? > Good to be liberal in terms of giving more power to adversary -Randomized -Unbounded Powerful -COA
10
Break Model Attempt I>> Secret key ? Then Enc(m) = m is secure Attempt II>> Entire Message? Then Enc(m) leaking most significant 10 bits is secure; m: bank password| amazon password| Attempt III>> No additional info about the message irrespective of prior information? Right Notion How to formalise? Need basics of Discrete Probability Theory
11
Discrete Probability Background > U: Finite set; e.g. {0,1} > Probability Distribution on U specifies the probabilities of the occurrence of the elements of U - e.g Probability Distribution on U = {0,1}: Pr(0) = ½, Pr(1) = ½ Pr(0) = 0, Pr(1) = 1 Probability distribution: Probability distribution Pr over U is a function Pr: U [0,1] such that Σ Pr(x) = 1 x in U > Uniform Probability Distribution on U: Pr(x) = 1/|U| for every x
12
Discrete Probability Background Event: Occurrence of one or more elements of U is called an event - e.g Consider Uniform Distribution on U = {0,1} 4 - Let A = occurrence of elements of U with msb two bits as 01 - Pr(A) = 1/4 Union Bound: For events A 1 and A 2 Pr [ A 1 ∪ A 2 ] ≤ Pr[A 1 ] + Pr[A 2 ] (extend for more than 2) Conditional probability: probability that one event occurs, assuming some other event occurred.
13
Discrete Probability Background Random Variable: variable that takes on (discrete) values from a finite set with certain probabilities (defined with respect to a finite set) Probability distribution for a random variable: specifies the probabilities with which the variable takes on each possible value of a finite set - Each probability must be between 0 and 1 - The probabilities must sum to 1 Done!!
14
Formulating Definition for SKE=(Gen,Enc,Dec) C K M M Random Variable K C ilu ihu Pr(M = ilu) =.7 Pr(M = ihu) =.3 Prob. Dist. Pr(K = k) = Pr(Gen outputs k) - Determined by external factors - Depends on Gen-Choose a message m, according to the given dist. - Generate a key k using Gen - Compute c Enc k (m) All the distributions are known to Prob. Dist. Of M and K are independent Prob. Dist. Of C depends on dist. of M and K
15
Numerical Example M = {a b c d} 1 4 - 3 10 - 3 20 - 3 10 - K = {k 1 k 2 k 3 } 1 4 - 1 4 - 1 2 - Enc Pr [C = 1] : Pr [C = 2] : Pr [M = b] Pr [K = k 2 ] + Pr [M = c] Pr [K = k 3 ] + Pr [M = d] Pr [K = k 1 ] = 0.2625 Pr [M = c] Pr [K = k 1 ] + Pr [M = d] Pr [K = k 2 ] + Pr [M = d] Pr [K = k 3 ] = 0.2625 Pr [M = a] Pr [K = k 1 ] + Pr [M = a] Pr [K = k 2 ] + Pr [M = b] Pr [K = k 3 ] = 0.2625 Pr [M = a] Pr [K = k 3 ] + Pr [M = b] Pr [K = k 1 ] + Pr [M = c] Pr [K = k 2 ] = 0.2125 What is the probability distribution on the cipher-text space C ? Pr [C = 3] : Pr [C = 4] : C = {1 2 3 4}.26.21
16
Threat & Break Model -Randomized -Unbounded Powerful -COA No additional info about the message should be leaked from the ciphertext irrespective of the prior information that the adv has What captures the prior information of the attacker about m ? - Probability distribution on the plain-text space M - The probability distribution {Pr[M = m]} Observing the cipher-text c should not change the attacker’s knowledge about the distribution of the plaintext - Mathematically, Pr[M = m | C = c] = Pr[M = m] What is the point in tapping over channel. I better watch the cricket match today Perfect Security!!!!
17
Perfectly-secure Encryption : Formal Definition Definition (Perfectly-secure Encryption): An encryption scheme (Gen, Enc, Dec) over a plaintext space M is perfectly-secure if for every probability distribution over M, every plain-text m M and every cipher-text c C, the following holds: Pr [M = m | C = c] = Pr [M = m] Posteriori probability that m is encrypted in c a priori probability that m might be communicated Probably the first formal definition of security - C. E. Shannon. Communication theory of secrecy systems. Bell Systems Technical Journal, 28(4): 656-715, 1949.
18
What have we done so far.. No assumption!! o Formulate a formal definition (threat + break model) o Identify assumptions needed and build a construction o Prove security of the construction relative to the definition and assumption
19
Perfectly-secure Encryption- Construction M = K = C = {0, 1} l Gen k R K m M k c Enc c:= m k k Dec m:= c k c C m Correctness:Enc k (m)Dec k ( )= m Vernam Cipher [1917]: But Shannon proved its security after formulating perfect security
20
Perfectly-secure Encryption- Construction M = K = C = {0, 1} l Gen k R K m M k c Enc c:= m k k Dec m:= c k c C m Theorem (Security):Vernam Cipher is perfectly-secure To prove Pr[M = m | C = c] = Pr[M = m] Proof: For arbitrary c and m, Pr[C = c | M = m] = Pr[K = c m] = 1/2 l Pr[C = c] m in M (irrespective of p. d. over M ) = 1/2 l Σ Pr[M = m] m in M = 1/2 l = Σ Pr[C = c | M = m] Pr[M = m]
21
Perfectly-secure Encryption- Construction M = K = C = {0, 1} l Gen k R K m M k c Enc c:= m k k Dec m:= c k c C m Pr[M = m | C = c] = Pr[C = c | M = m ] Pr[M = m] Pr[C = c] = Pr[M = m] Historical Use of Vernam Cipher: Redline between White House & Kremlin during Cold war. (Bayes' Theorem)
22
What have we done so far.. o Formulate a formal definition (threat + break model) o Identify assumptions needed and build a construction o Prove security of the construction relative to the definition and assumption
23
Vernam Cipher is not all that nice because.. o How long is the key? o Can we reuse the keys for multiple messages? No!! length is as long as the message - For long messages hard to agree on long key - What happens the parties cannot predict the message size in advance - c = m k, c’ = m’ k - c c’ = m m’ Adversary learns the difference! - Perfect security breaks down One-time Pad (OTP) VENONA Project: US & UK decrypted Russian Plaintext exploiting the use of same key to pad many messages Let us design another scheme that overcomes the drawbacks.. Alas! Inherent problems..
24
Chalk & Talk Assignment o Various Perfect Security Definitions and their Equivalence Define it Definition I: Pr [M = m | C = c] = Pr [M = m] Definition II: Pr [C = c | M = m] = Pr [C = c | M = m’] Definition III: KL Chapter 2
25
Next class… o Various Perfect Security Definitions and their Equivalence Define it Definition I: Pr [M = m | C = c] = Pr [M = m] Definition II: Pr [C = c | M = m] = Pr [C = c | M = m’] Definition III: KL Chapter 2 Definition IV:
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.