Presentation is loading. Please wait.

Presentation is loading. Please wait.

Ch23

Similar presentations


Presentation on theme: "Ch23 "β€” Presentation transcript:

1

2 Ch23 𝐸 = 𝜎 2 πœ€ 0 βˆ…= π‘ž πœ€ 0 βˆ…= 𝐸 𝐴 =πΈπ΄π‘π‘œπ‘ πœƒ π‘ž=𝜎𝐴

3 Ch23 Q.1. The square surface shown in Fig. measures 3.2 mm on each side. It is immersed in a uniform electric field with magnitude E = 1800 N/C and with field lines at an angle of 0 = 35Β° with a normal to the surface, as shown. Take that normal to be directed "outward" as though the surface were one face of a box. Calculate the electric flux through the surface. . Q.7. A point charge of 1.8 Β΅C is at the center of a Gaussian cube 55 cm on edge. What is the net electric flux through the surface? Q.33. In Fig., two large, thin metal plates are parallel and close to each other. On their inner faces, the plates have excess surface charge densities of opposite signs and magnitude 7.00 X I0 -22 C/m2. In unit-vector notation, what is the electric field at points (a) to the left of the plates, (b) to the right of them, and (c) between them? .

4 Ch23 Q.40. The Figure shows a very large non-conducting sheet that has a uniform surface charge density of Οƒ = Β΅C/m2; it also shows a particle of charge Q = 6.00 Β΅C. at distance d from the sheet. Both are fixed in place. If d = 0.2 m. at what (a) positive and (b) negative coordinate on the x axis (other than infinity) is the net electric field E ⃑_net of the sheet and particle zero? (c) If d = 0.8 m. at what coordinate on the x axis is E ⃑_net=0 ? . Q.42. Two large metal plates of area 1.0 m2 face each other, 5.0 cm apart. with equal charge magnitudes |q| but opposite signs. The field magnitude E between them is 55 N/C. Find |q|.

5 𝑬 𝑬 𝑬 𝑬 βˆ…= 𝐸 𝐴 =πΈπ΄π‘π‘œπ‘ πœƒ βˆ…= 𝐸 𝐴 =πΈπ΄π‘π‘œπ‘ πœƒ βˆ΄βˆ…=πΈπ΄π‘π‘œπ‘ πŸπŸ–πŸŽ=βˆ’EA βˆ΄βˆ…=πΈπ΄π‘π‘œπ‘ πŸŽ=+EA
𝒅 𝑨 (normal) 𝒅 𝑨 (normal) 𝒅 𝑨 𝑬 πœƒ=180 𝒅 𝑨 𝑬 πœƒ=0 βˆ…= 𝐸 𝐴 =πΈπ΄π‘π‘œπ‘ πœƒ βˆ…= 𝐸 𝐴 =πΈπ΄π‘π‘œπ‘ πœƒ βˆ΄βˆ…=πΈπ΄π‘π‘œπ‘ πŸπŸ–πŸŽ=βˆ’EA βˆ΄βˆ…=πΈπ΄π‘π‘œπ‘ πŸŽ=+EA

6 𝑬 𝑬 𝑬 𝑬 βˆ…= 𝐸 𝐴 =πΈπ΄π‘π‘œπ‘ πœƒ βˆ…= 𝐸 𝐴 =πΈπ΄π‘π‘œπ‘ πœƒ βˆ΄βˆ…=πΈπ΄π‘π‘œπ‘ πŸ—πŸŽ=0 βˆ΄βˆ…=πΈπ΄π‘π‘œπ‘ πŸ—πŸŽ=0
𝒅 𝑨 (normal) 𝒅 𝑨 (normal) 𝑬 𝑬 𝒅 𝑨 𝑬 πœƒ=90 𝒅 𝑨 𝑬 πœƒ=90 βˆ…= 𝐸 𝐴 =πΈπ΄π‘π‘œπ‘ πœƒ βˆ…= 𝐸 𝐴 =πΈπ΄π‘π‘œπ‘ πœƒ βˆ΄βˆ…=πΈπ΄π‘π‘œπ‘ πŸ—πŸŽ=0 βˆ΄βˆ…=πΈπ΄π‘π‘œπ‘ πŸ—πŸŽ=0

7 𝑬 πŸ‘πŸ“ 𝟎 𝒅 𝑨 (normal) 𝒅 𝑨 𝑬 πœƒ= πŸπŸ’πŸ“ 𝟎 πŸ‘πŸ“ 𝟎 βˆ…= 𝐸 𝐴 =πΈπ΄π‘π‘œπ‘ πœƒ βˆ΄βˆ…=πΈπ΄π‘π‘œπ‘ πŸπŸ’πŸ“ .

8 + - + - + - + - + - + - + - + - + - 𝐸 𝑛𝑒𝑑 = 𝐸 + 𝑖 + 𝐸 βˆ’ 𝑖 𝐸 βˆ’ 𝐸 + a)
𝐸 𝑛𝑒𝑑 = 𝐸 + 𝑖 + 𝐸 βˆ’ 𝑖 𝐸 βˆ’ 𝐸 + a) 𝐸 𝑛𝑒𝑑 = 𝐸 + βˆ’ 𝑖 + 𝐸 βˆ’ + 𝑖 + - 𝐸 + βˆ’ 𝑖 𝐸 βˆ’ + 𝑖 + - = βˆ’πœŽ 2 πœ€ 0 𝑖 + 𝜎 2 πœ€ 0 𝑖 = βˆ’7.00 Γ— 10 βˆ’22 2 πœ€ 0 𝑖 Γ— 10 βˆ’22 2 πœ€ 0 𝑖 =0 + - + 𝐸 βˆ’ 𝐸 + - 𝐸 βˆ’ 𝐸 + 𝐸 βˆ’ 𝐸 + a a - c c + b b + - b) 𝐸 𝑛𝑒𝑑 = 𝐸 + + 𝑖 + 𝐸 βˆ’ βˆ’ 𝑖 =0 𝐸 + + 𝑖 𝐸 βˆ’ βˆ’ 𝑖 = 0 + - + - c) 𝐸 𝑛𝑒𝑑 = 𝐸 + βˆ’ 𝑖 + 𝐸 βˆ’ βˆ’ 𝑖 + - 𝐸 + βˆ’ 𝑖 𝐸 βˆ’ βˆ’ 𝑖 = βˆ’πœŽ 2 πœ€ 0 𝑖 + βˆ’πœŽ 2 πœ€ 0 𝑖 = βˆ’7.00 Γ— 10 βˆ’22 2 πœ€ 0 𝑖 βˆ’ 7.00 Γ— 10 βˆ’22 2 πœ€ 0 𝑖 = βˆ’7.91Γ— 10 βˆ’11 𝑁/𝐢 𝑖 .

9 (a) and (b) π‘Žπ‘‘ 𝑑=0.2π‘š π‘Žπ‘›π‘‘ 𝐸 𝑛𝑒𝑑 =0 r=?
𝜎=βˆ’2Γ— 10 βˆ’6 𝐢 π‘š 2 , 𝑄=6Γ— 10 βˆ’6 𝐢 (a) and (b) π‘Žπ‘‘ 𝑑=0.2π‘š π‘Žπ‘›π‘‘ 𝐸 𝑛𝑒𝑑 = r=? (c) π‘Žπ‘‘ 𝑑=0.8π‘š π‘Žπ‘›π‘‘ 𝐸 𝑛𝑒𝑑 = r=? 𝐸 𝑛𝑒𝑑 =π‘§π‘’π‘Ÿπ‘œ, π‘€β„Žπ‘’π‘› 𝐸 𝑄 π‘Žπ‘›π‘‘ 𝐸 𝜎 π‘Žπ‘Ÿπ‘’ π‘œπ‘› π‘œπ‘π‘π‘–π‘ π‘’π‘‘ π‘‘π‘–π‘Ÿπ‘’π‘π‘‘π‘–π‘œπ‘› 𝜎 π’š - "π’‡π’π’“π’ƒπ’Šπ’…π’…π’†π’ π’“π’†π’ˆπ’Šπ’π’" a c b - 𝜎 𝑄 - 𝜎 𝑄 𝜎 𝑄 - 𝑸 - + 𝒙 - 0.691m 0.691m - - 0.2m 𝐸 𝑛𝑒𝑑 = 𝐸 𝑄 βˆ’ 𝐸 𝜎 = ∴ 𝐸 𝑄 = 𝐸 𝜎 ∡ 𝐸 𝑄 =π‘˜ π‘ž π‘Ÿ 2 , π‘Žπ‘›π‘‘ 𝐸 𝜎 = 𝜎 2 πœ€ 0 βˆ΄π‘˜ π‘ž π‘Ÿ 2 = 𝜎 2 πœ€ π‘Ÿ = 2 πœ€ 0 π‘žπ‘˜ 𝜎 =0.691π‘š - In this part, 𝐸 𝑛𝑒𝑑 =zero only at the point x = m (on the positive axis), and x = m

10 (a) and (b) π‘Žπ‘‘ 𝑑=0.2π‘š π‘Žπ‘›π‘‘ 𝐸 𝑛𝑒𝑑 =0 r=?
𝜎=βˆ’2Γ— 10 βˆ’6 𝐢 π‘š 2 , 𝑄=6Γ— 10 βˆ’6 𝐢 (a) and (b) π‘Žπ‘‘ 𝑑=0.2π‘š π‘Žπ‘›π‘‘ 𝐸 𝑛𝑒𝑑 = r=? (c) π‘Žπ‘‘ 𝑑=0.8π‘š π‘Žπ‘›π‘‘ 𝐸 𝑛𝑒𝑑 = r=? 𝐸 𝑛𝑒𝑑 =π‘§π‘’π‘Ÿπ‘œ, π‘€β„Žπ‘’π‘› 𝐸 𝑄 π‘Žπ‘›π‘‘ 𝐸 𝜎 π‘Žπ‘Ÿπ‘’ π‘œπ‘› π‘œπ‘π‘π‘–π‘ π‘’π‘‘ π‘‘π‘–π‘Ÿπ‘’π‘π‘‘π‘–π‘œπ‘› 𝜎 π’š - "π’‡π’π’“π’ƒπ’Šπ’…π’…π’†π’ π’“π’†π’ˆπ’Šπ’π’" a c b - 𝜎 𝑄 - 𝜎 𝑄 𝜎 𝑄 - 𝑸 - + 𝒙 - 0.691m 0.691m - - 0.8m 𝐸 𝑛𝑒𝑑 = 𝐸 𝑄 βˆ’ 𝐸 𝜎 = ∴ 𝐸 𝑄 = 𝐸 𝜎 ∡ 𝐸 𝑄 =π‘˜ π‘ž π‘Ÿ 2 , π‘Žπ‘›π‘‘ 𝐸 𝜎 = 𝜎 2 πœ€ 0 βˆ΄π‘˜ π‘ž π‘Ÿ 2 = 𝜎 2 πœ€ π‘Ÿ = 2 πœ€ 0 π‘žπ‘˜ 𝜎 =0.691π‘š - . In this part, 𝐸 𝑛𝑒𝑑 =zero only at the point x = m (on the positive axis).


Download ppt "Ch23 "

Similar presentations


Ads by Google