Download presentation
Presentation is loading. Please wait.
Published byImogene Fitzgerald Modified over 9 years ago
1
Electron-hole duality and vortex formation in quantum dots Matti Manninen Jyväskylä Matti Koskinen Jyväskylä Stephanie Reimann Lund Yongle Yu Lund Maria Tureblad Lund Susanne Viefers Oslo Ben Mottelson Nordita
2
DOUBLE BARRIER SOURCE DRAIN QUANTUM DOT Island with ELECTRONS Tarucha et al., PRL, 1996 ”ARTIFICIAL ATOM” InGaAs (5% In) well AlGaAs (22%) barriers Tarucha et al., PRL, 1996, NTT Research Labs Trapped fermions in quasi – 2D
3
Electron Number N Magnetic Field B Shel l Stru ctur e 2 6 12 Conductance Gate voltage
4
Reimann, Koskinen, Manninen, Mottelson, Phys. Rev. Lett. (1999)
5
PHASE DIAGRAM S.M. Reimann, M. Manninen, M. Koskinen and B. Mottelson, PRL 83, 3270 (1999)
6
Tarucha et al., PRL, 1996 Oosterkamp et al., PRL, 2001 Coulomb blockade spectra in a magnetic field T.H. Oosterkamp et al, PRL 82, 2931 (1999)
7
H. Saarikoski (2003) PhD Thesis, Helsinki Univ. Of Technology, 2003 6-electron quantum dot at high magnetic fields in CSDFT
9
We can do exact many-particle calculations For small systems. Can we understand vortex formation in Rotating systems?
10
We solve exactly the problem of 20 interacting polarized (spinless) electrons or spinless bosons in a two-dimensional harmonic potential and analyze the rotational spectrum (yrast spectrum)
12
Result for 20 electrons E(M) - f(M) M
13
Harmonic oscillator in two dimensions single particle level structure angular momentum -4 -3 -2 -1 0 1 2 3 4 energy
14
Harmonic oscillator in two dimensions single particle level structure angular momentum -4 -3 -2 -1 0 1 2 3 4 energy Ground state of six polarized electrons
15
Harmonic oscillator in two dimensions single particle level structure angular momentum -4 -3 -2 -1 0 1 2 3 4 energy Rotational state of six polarized electrons
16
-4 -3 -2 -1 0 1 2 3 4
17
Radial density
18
-4 -3 -2 -1 0 1 2 3 4 Radial density
19
-4 -3 -2 -1 0 1 2 3 4 11111100000 Total density of 20 electrons: Maximum Density Droplet (MDD) Radial density
20
-4 -3 -2 -1 0 1 2 3 4 11111100000 Total density of 20 electrons: Maximum Density Droplet (MDD) Radial density NEW NOTATION
21
Radial density: Total density of 20 electrons “Chamon-Wen edge” 11111110111111111111100000 Surface reconstruction:
22
Radial density: Total density of 20 electrons “3 vortices” 1111110001111111111111100000 Vortex formation: Generator of 3 vortices
24
111111111111111111110000000 011111111111111111111000000
25
111111000111111111111110000
26
Particle-hole dualism for spinless electrons
27
Particle-hole dualism and vortices 1111110001111111111111100000 3-vortex state: 1111101010111111111111100000 1111110010111111111111010000 A B C + + +... Same state for holes: 0000001110000000000000011111 A ++ 0000010101000000000000011111 B ++...
28
~ For holes: 0000001110000000000000011111 A ++ 0000010101000000000000011111 B ++... 0000001110000000000000 A ++ 0000010101000000000000 B ++... ~ q = 7 Holes localized in a ring ~ ~
29
Radial density: Total density of 20 electrons “3 vortices” 1111110001111111111111100000 Vortex formation: Generator of 3 vortices
30
Radial density: Total density of 3 holes as “3 vortices” 1111110001111111111111100000 Vortex formation: Generator of 3 vortices 00000011100000000000000 particles holes
31
20 electrons energy angular momentum
32
20 electrons energy angular momentum Fit a smooth function f(m)=a+bm+cm² to the yrast line f(m)=a+bm+cm²
34
“cusps”
35
E(m)-f(m) Difference spectrum N = 20
36
Compare to the spectrum of holes
37
Yrast spectrum of 20 spinless electrons energy Angular momentum
38
Take part of the spectrum
39
E = E(m) + 0.09 m
40
Change to spectrum of holes: m(holes) = 253 - m Spectrum for 20 electrons
41
Spectrum for 20 particles (3 holes) Spectrum for 3 particles Spectrum for 20 electrons 3 holes
42
Spectrum for 20 particles (3 holes) Spectrum for 3 particles Center of mass excitations Spectrum for 20 electrons 3 holes
43
Spectrum for 20 particles (3 holes) Spectrum for 3 particles Center of mass excitations period of 3 oscillations
44
Pair-correlation for 3 particles
45
N = 3
47
Compare pair-correlation of 3 particles to that of 3 holes in 20 electron system
48
N = 3 N = 20 hole-hole correlation m=16m=17m=18 m=231m=230 m=229
49
Overlaps ?
50
Spectrum for 20 electrons 3 holes Overlap between the particle and hole states
51
Pair correlation of three holes corresponding to the three vortices particles N=20, L=232 (filling factor=0.82) holes N=3, L=18 (filling factor=1/7, q=7) Radial density:
52
Hole-hole correlation for N = 30, M = 555 (Coulomb interaction) Ground state First excited state Six vortices have two stable coonfigurations
53
How about bosons ?
57
Is there a single-particle explanation ?
59
229 11111110001111111111111000000000 M 3-vortex region in the mean field approach: 228 229 energy
60
229 11111110001111111111111000000000 230 11111101001111111111111000000000 M 3-vortex region in the mean field approach: 228 229 energy 230
61
229 11111110001111111111111000000000 230 11111101001111111111111000000000 231 11111100101111111111111000000000 M 3-vortex region in the mean field approach: 228 229 energy 230231
62
229 11111110001111111111111000000000 230 11111101001111111111111000000000 231 11111100101111111111111000000000 232 11111100011111111111111000000000 M 3-vortex region in the mean field approach: 228 229 energy 230231232 Cusps appear at 'compact' states
63
N = 20 N = 4 (holes) Difference spectrum fitted with 1 parameter 1v 2v 3v 4v
64
The oscillations in the spectrum can be explained with the mean field model but the pair-correlation not
65
Exact result Mean field result Pair correlation for 3 holes
66
Conclusion: Universal vortex formation Particle-hole duality Pair-correlation functions (revealed by energy spectrum)
67
Conclusions: Yrast spectrum shows vortix-rings as oscillations Spectrum is dominated by holes in Fermi see Bosons have similar vortex formation (what are holes for bosons?)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.