Download presentation
Presentation is loading. Please wait.
Published byCandice Townsend Modified over 9 years ago
1
DFT evolutionary search for Mg 2 Si under pressure Yu.V. Luniakov Institute of Automation and Control Processes, Vladivostok, Russia Department of Surface Physics
2
Оbjectives To search for new structures near transition pressures To study how Universal Structure Predictor for Evolutionary Xtallography can reproduce the known structure
3
Оbjectives To study how Universal Structure Predictor for Evolutionary Xtallography can reproduce the known structure To search for new structures near transition pressures
6
A.R. Oganov. Modern Methods of Crystal Structure Prediction. (Wiley- VCH., 2010) ISBN: 978-3-527-40939-6.
11
Methodology A.R. Oganov Modern Methods of Crystal Structure Prediction. (Wiley-VCH., 2010) ISBN: 978-3-527-40939-6.
12
Object of investigation
13
Thermoelectric conversion effective material Abundant and environmental friendly material
14
225, Fm3m62, Pnma 194, P6 3 /mmc Si Mg P=7.5 GPa P=21.3 GPa
15
VASP code, Kresse, G. and Furhmüller, J. (2007). Institut für Materialphysik. Universität Wien, Austria http://cms.mpi.univie.ac.at/vasp/ Conjugate gradient type of ionic relaxation Generalized Gradient Approximation of Perdew Burke Enzerof form 1 for the exchange and correlation functional 1 J.P. Perdew, K. Burke, M. Ernzerhof (1996). Phys. Rev. Lett. 77: 3865. projector-augmented wave pseudopotentials (PAW) Kresse, G. and Joubert, D. (1999). Phys. Rev. B 59: 1758- 1775 Details of total energy calculations: Computational details: E cut = 350-500 eV Unit cell consists of 4 Si and 8 Mg atoms k-point meshes resolution: 2 0.01 Å -1 – 2 0.02 Å -1 ~ 200 4 Si 8 Mg Random initial distributions
16
VASP code, Kresse, G. and Furhmüller, J. (2007). Institut für Materialphysik. Universität Wien, Austria http://cms.mpi.univie.ac.at/vasp/ Conjugate gradient type of ionic relaxation Generalized Gradient Approximation of Perdew Burke Enzerof form 1 for the exchange and correlation functional 1 J.P. Perdew, K. Burke, M. Ernzerhof (1996). Phys. Rev. Lett. 77: 3865. projector-augmented wave pseudopotentials (PAW) Kresse, G. and Joubert, D. (1999). Phys. Rev. B 59: 1758- 1775 Details of total energy calculations: Computational details: E cut = 350-500 eV Unit cell consists of 4 Si and 8 Mg atoms k-point meshes resolution: 2 0.01 Å -1 – 2 0.02 Å -1 ~ 200 Si Mg Random initial distributions
17
VASP code, Kresse, G. and Furhmüller, J. (2007). Institut für Materialphysik. Universität Wien, Austria http://cms.mpi.univie.ac.at/vasp/ Conjugate gradient type of ionic relaxation Generalized Gradient Approximation of Perdew Burke Enzerof form 1 for the exchange and correlation functional 1 J.P. Perdew, K. Burke, M. Ernzerhof (1996). Phys. Rev. Lett. 77: 3865. projector-augmented wave pseudopotentials (PAW) Kresse, G. and Joubert, D. (1999). Phys. Rev. B 59: 1758- 1775 Details of total energy calculations: Computational details: E cut = 350-500 eV Unit cell consists of 4 Si and 8 Mg atoms k-point meshes resolution: 2 0.01 Å -1 – 2 0.02 Å -1 ~ 200 Si Mg Random initial distributions
18
VASP code, Kresse, G. and Furhmüller, J. (2007). Institut für Materialphysik. Universität Wien, Austria http://cms.mpi.univie.ac.at/vasp/ Conjugate gradient type of ionic relaxation Generalized Gradient Approximation of Perdew Burke Enzerof form 1 for the exchange and correlation functional 1 J.P. Perdew, K. Burke, M. Ernzerhof (1996). Phys. Rev. Lett. 77: 3865. projector-augmented wave pseudopotentials (PAW) Kresse, G. and Joubert, D. (1999). Phys. Rev. B 59: 1758- 1775 Details of total energy calculations: Computational details: E cut = 350-500 eV Unit cell consists of 4 Si and 8 Mg atoms k-point meshes resolution: 2 0.01 Å -1 – 2 0.02 Å -1 ~ 200 Si Mg Random initial distributions
19
VASP code, Kresse, G. and Furhmüller, J. (2007). Institut für Materialphysik. Universität Wien, Austria http://cms.mpi.univie.ac.at/vasp/ Conjugate gradient type of ionic relaxation Generalized Gradient Approximation of Perdew Burke Enzerof form 1 for the exchange and correlation functional 1 J.P. Perdew, K. Burke, M. Ernzerhof (1996). Phys. Rev. Lett. 77: 3865. projector-augmented wave pseudopotentials (PAW) Kresse, G. and Joubert, D. (1999). Phys. Rev. B 59: 1758- 1775 Details of total energy calculations: Computational details: E cut = 350-500 eV Unit cell consists of 4 Si and 8 Mg atoms k-point meshes resolution: 2 0.01 Å -1 – 2 0.02 Å -1 ~ 200 Si Mg Random initial distributions
20
Mg 2 Si crystal at ambient pressure conditions
21
Mg 2 Si crystal at P = 5 GPa
22
Mg 2 Si crystal at P = 10 GPa
23
Mg 2 Si crystal at P = 15 GPa
24
Mg 2 Si crystal at P = 20 GPa
25
Mg 2 Si crystal at P = 25 GPa
26
Theory Experiment 225, Fm3m62, Pnma 194, P6 3 /mmc 225, Fm3m 62, Pnma 63, Cmcm 194, P6 3 /mmc P=7.5 GPa P=21.3 GPa
27
Theory Experiment 225, Fm3m62, Pnma 194, P6 3 /mmc 225, Fm3m 62, Pnma 63, Cmcm 194, P6 3 /mmc P=7.5 GPa P=21.3 GPa ? ? ?
28
Enthalpies of various structures Mg 2 Si as a function of pressure
29
5.6 GPa 22.3 GPa
30
Enthalpies of various structures Mg 2 Si as a function of pressure 5.6 GPa 22.3 GPa 19.6 GPa24.1 GPA J.-H. Hao, Z.-G. Guo, Q.-H. Jin, Solid State Commun. 150, 2299 (2010). [Yu Ben-Hai and Chen Dong, Chin. Phys. B 20, 030508 (2011). 6.1 GPa Wien2k F. Kalarasse, B. Bennecer, J. Phys. Chem. Solids 69, 1775 (2008). 8.4 GPa Сaster F. Yu, J.X. Sun, W. Yang, R.G. Tian, G.F. Ji, Solid State Commun. 150, 620 (2010) 12.8 GPa Сaster J.-H. Hao, Z.-G. Guo, Q.-H. Jin, Solid State Commun. 150, 2299 (2010).
31
Enthalpies of various structures Mg 2 Si as a function of pressure 5.6 GPa 22.3 GPa 19.6 GPa24.1 GPA J.-H. Hao, Z.-G. Guo, Q.-H. Jin, Solid State Commun. 150, 2299 (2010). [Yu Ben-Hai and Chen Dong, Chin. Phys. B 20, 030508 (2011). 6.1 GPa Wien2k F. Kalarasse, B. Bennecer, J. Phys. Chem. Solids 69, 1775 (2008). 8.4 GPa Сaster F. Yu, J.X. Sun, W. Yang, R.G. Tian, G.F. Ji, Solid State Commun. 150, 620 (2010) 12.8 GPa Сaster J.-H. Hao, Z.-G. Guo, Q.-H. Jin, Solid State Commun. 150, 2299 (2010). P=7.5 GPa P=21.3 GPa
32
Experiment Theory 62, Pnma 63, Cmcm 194, P6 3 /mmc ? 225, Fm3m62, Pnma 194, P6 3 /mmc
33
Theory 62, Pnma 63, Cmcm 194, P6 3 /mmc
34
Theory 62, Pnma 63, Cmcm 194, P6 3 /mmc Side view
35
Theory 62, Pnma 63, Cmcm 194, P6 3 /mmc Side view Top view
36
Theory 62, Pnma 63, Cmcm 194, P6 3 /mmc Side view Top view
37
Theory Top view 63, Cmcm 194, P6 3 /mmc
38
Theory Top view 63, Cmcm 194, P6 3 /mmc
39
Theory Top view 63, Cmcm 194, P6 3 /mmc
40
Theory Mg1(1/3, 2/3, 1/4) Mg2 (0, 0, 0) Si (1/3, 2/3, 3/4) 63, Cmcm 194, P6 3 /mmc
41
Energy differences between and Pressure, GPa SI, Å Mg, Å E, eV 16 -0.00020.0005-0.0004 17 -0.00020.0004-0.0005 18 -0.00010.0003-0.0004 19 -0.00010.0003-0.0005 20 0.00010.0002 21 0.00000.00030.0006 22 -0.00010.00040.0006 23 -0.00010.00040.0007 24 -0.00020.00040.0006 25 0.00000.00020.0007 26 -0.00010.00030.0012 27 0.00000.00020.0004 28 0.00020.00010.0005 194, P6 3 /mmc 63, Cmcm
42
Polymorphism of Mg 2 Sn at high temperatures and pressures T. I. Dyuzheva, S. S. Kabalkina, and L.F. Vereshchanig, Kristallografiya, 17, №4, р. 804. pseudohexagonal network of Ni atoms in the Ni 2 Si structure
43
Conclusion 1.DFT evolutionary search for global minima of Mg 2 Si silicide reproduces the experimental structures at pressure range 0–25 GPa 2.The P63/mmc structure is not the global minimum one. 3.A new possible high-pressure structure Cmcm was predicted, that is a little more stable than that.
47
Enthalpies of various structures Mg 2 Si as a function of pressure
48
Symmetry Identification EA92 6.364 6.358 7.780 65.915 65.874 89.987 Sym.group: 225 1.0000 3.136808 5.462888 -0.902083 -3.133455 0.899467 -5.458945 -4.551043 6.310156 -0.046073 4 8 Direct 0.124559 0.874854 0.248101 0.374715 0.624543 0.748453 0.624602 0.374538 0.248229 0.875104 0.125194 0.748233 0.500588 0.250229 0.997983 0.000634 0.249708 0.998881 0.749828 0.499084 0.498024 0.749483 0.999420 0.498726 0.499018 0.749848 0.998337 0.998872 0.749998 0.998007 0.249379 0.500230 0.498178 0.249766 0.999779 0.498120 1.0 4.4209599495 0.0000000000 0.0000000000 0.0000000000 4.4209599495 0.0000000000 0.0000000000 0.0000000000 6.2600002289 Si Mg 1 2 Direct 0.500000000 0.500000000 0.500360012 0.500000000 0.000000000 0.250310004 0.000000000 0.500000000 0.250310004 Sym.group: 99
49
Lattice parameters of Fm3m, Pnma and P6 3 /mmc equilibrium structures Solid State Commun. 150, 2299 (2010)] 6.35 Å
50
Lattice parameters of Fm3m, Pnma and P6 3 /mmc equilibrium structures Solid State Commun. 150, 2299 (2010)] 6.35 Å 6.36
51
Lattice parameters of Fm3m, Pnma and P6 3 /mmc equilibrium structures Solid State Commun. 150, 2299 (2010)] 6.35 Å 4.1985.278
52
Lattice parameters of Fm3m, Pnma and P6 3 /mmc equilibrium structures Solid State Commun. 150, 2299 (2010)] 6.35 Å 6.5353.929 7.771
53
Lattice parameters of Fm3m, Pnma and P6 3 /mmc equilibrium structures Solid State Commun. 150, 2299 (2010)] 6.35 Å 6.5353.929 7.771
54
Lattice parameters of Fm3m, Pnma and P6 3 /mmc equilibrium structures Solid State Commun. 150, 2299 (2010)] 6.35 Å 9 %-12 % 14 %
55
Enthalpies of various structures Mg 2 Si as a function of pressure 1
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.