Download presentation
Presentation is loading. Please wait.
Published byAmelia McBride Modified over 9 years ago
1
Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych Weiwei Y. Tong E. Kanso J. E. Marsden P. Schröder M. Desbrun
2
Time Integration Interested in Dynamic Systems Analytical solutions usually difficult or impossible Need numerical methods to compute time progression
3
Local vs. Global Accuracy Local accuracy (in scientific applications) In CG, we care more for qualitative behavior Global behavior > Local behavior for our purposes A geometric approach can guarantee both
4
Simple Example: Swinging Pendulum
5
Discretizing the Problem
6
Taylor Approximation
7
Explicit Euler Method
8
Implicit Euler Method
9
Symplectic Euler Method
10
Symplecticity
11
Geometric View: Lagrangian Mechanics
12
Euler-Lagrange Equation
13
Lagrangian Example: Falling Mass
14
The Discrete Lagrangian
15
The Discrete Action Functional
16
Discrete Euler-Lagrange Equation
17
Discrete Lagrangian Example: Falling Mass
18
More General: Hamilton-Pontryagin Principle
19
Discrete Hamilton-Pontryagin Principle
20
Faster Update via Minimization
21
Minimization: The Lilyan
22
Results http://tinyurl.com/n5sn3xq
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.