Presentation is loading. Please wait.

Presentation is loading. Please wait.

Warm Up Introduction to Polynomials and Adding and Subtracting Polynomials.

Similar presentations


Presentation on theme: "Warm Up Introduction to Polynomials and Adding and Subtracting Polynomials."— Presentation transcript:

1 Warm Up Introduction to Polynomials and Adding and Subtracting Polynomials

2 Classifying Polynomials: We classify polynomials based on the number of _________. What is a monomial? What is a binomial? What is a trinomial? When do we use the term polynomial? terms A polynomial with only 1 term. A polynomial with 2 terms. A polynomial with 3 terms. We use the term polynomial to describe any expression which contains some combination of variables and numbers.

3 What is a term? Terms are made up of numbers, variables or the product and/or quotient of some combination of numbers and variables. 2x EXAMPLE: 2x is a term. (the product of a # and variable) 2x/3 2x/3 is a term. (the quotient of a # and variable) Terms are separated by ________ and ________ signs! + -

4 Classify each of the polynomials 1.3x 2 y + 3x + 4y 2.2x 2 y 4 z 3.2xy 2 + 3x 2 y + 9x 4.5x 2 y + 2xy 3 Trinomial Monomial Trinomial Binomial

5 Calculating the degree of a polynomial.. If it is a single variable term, find the term with the largest exponent. 5x 3 + 9x 2 + x This is a 3rd degree polynomial. Remember the understood 1!!! 1 If it is a multi-variable term, you add the exponents of all of the variables. 4x 2 y + 2xy 3 + 9 This is a 4th degree polynomial (3+1=4). Don’t forget the understood 1’s!!!! 11

6 Calculate the degree of the polynomial… 1.6x 2 + 4x + 4x 3 + x 2.21x 2 y + 12x 4 y 2 + 2xy 4 3.3x 2 + 2y 3 3rd degree 6th degree 3rd degree

7 Writing a polynomial in standard form… Standard form is in descending order of the x variable. 1.2xy 3 + 3x 2 y + x 3 2.3xy 2 + 3x 3 + 2x 2 y X 3 + 3x 2 y + 2xy 3 3x 3 + 2x 2 y + 3xy 2

8 Adding and Subtracting Polynomials… is nothing more than combining like terms. Remember you can do this vertically or horizontally. 1.(2x 2 - 3x + 3) + (4x 2 + 5x - 9) 2.(3x 2 - 9x - 5) - (-2x 2 - 4x + 5) 6x 2 + 2x -6 5x 2 - 5x - 10 5(x 2 - x - 2)

9 Ex 1 (x 2 + 3x + 4) + (-2x 2 + 10x - 5) Combine LIKE terms x 2 + 3x + 4 -2x 2 + 10x - 5 -1x 2 + 13x - 1 Final Answer

10 Ex 2. (4b 3 - 2b) + (b 3 + 6b 2 + 3b - 7) 4b 3 + 0b 2 - 2b + 0 b 3 + 6b 2 + 3b - 7 5b 3 + 6b 2 + 1b - 7 Final Answer

11 Ex 3. (12y 2 - 8y + 4) - (9y 2 + 5y + 1) Don’t forget to Distribute the -1!! (12y 2 - 8y + 4) - 1(9y 2 + 5y + 1) (12y 2 - 8y + 4) - 9y 2 - 5y - 1 12y 2 - 8y + 4 - 9y 2 - 5y - 1 3y 2 - 13y + 3 Final Answer

12 Ex 4. (3a 3 + 10a - 15) - (-a 3 + 2a 2 + 6a - 9) (3a 3 + 10a - 15) - 1(-a 3 + 2a 2 + 6a - 9) 3a 3 + 10a - 15 + a 3 - 2a 2 - 6a + 9 3a 3 + 0a 2 + 10a - 15 +a 3 - 2a 2 - 6a + 9 4a 3 - 2a 2 + 4a - 6 Final Answer

13 POLYNOMIAL MULTIPLICATION (2x - 3)(x + 5) 3 methods a.Distribute (2x - 3)(x + 5) *4 multiplications 2x 2 + 10x - 3x - 15 (then combine like terms) 2x 2 + 10x - 3x - 15 2x 2 + 7x - 15 Final Answer

14 b. 3rd grade style 2x - 3 x + 5 +10x - 15 2x 2 - 3x + 0 2x 2 + 7x - 15 Final Answer!

15 c. Box Method 2x - 3 x 2x 2 -3x + 5 +10x -15 2x 2 + 7x - 15 Final Answer

16 Ex 5. (4x + 7)(3x + 7) a.) 12x 2 + 28x + 21x + 49 12x 2 + 49x + 49 b.) 4x + 7c.) 4x + 7 3x + 7 3x 12x 2 +21x +28x + 49 + 7 +28x + 49 12x 2 + 21x + 0 12x 2 + 49x + 49

17 Ex 6. (x - 1)(x 2 - 4x + 6) a.x 3 - 4x 2 + 6x - 1x 2 + 4x - 6 x 3 - 5x 2 + 10x - 6 b. x 2 - 4x + 6c. x 2 - 4x + 6 x - 1 x x 3 -4x 2 +6x -1x 2 + 4x - 6 -1 -1x 2 +4x - 6 1x 3 -4x 2 + 6x + 0 x 3 - 5x 2 + 10x - 6 x 3 - 5x 2 + 10x - 6

18 Ex 7. (2z 2 + 3z - 4)(4z + 5) a.8z 3 + 10z 2 + 12z 2 + 15z - 16z - 20 8z 3 + 22z 2 - 1z - 20 b. 2z 2 + 3z - 4 c. 2z 2 + 3z - 4 4z + 5 4z 8z 3 +12z 2 -16z +10z 2 + 15z - 20 +5 10z 2 +15z - 20 8z 3 +12z 2 - 16z + 0 8z 3 + 22z 2 - 1z - 20

19 Ex 8. (2a + 5)(2a - 5) a.4a 2 - 10a + 10a - 25 4a 2 - 25 b. 2a + 5c.2a +5 2a - 5 2a 4a 2 +10a -10a - 25 -5 -10a -25 4a 2 +10a + 0 4a 2 - 25

20 Ex 9. (3m + 4n) 2 a.(3m + 4n)(3m + 4n) 9m 2 + 12mn + 12mn + 16n 2 9m 2 + 24mn + 16n 2 b.3m + 4n c. 3m +4n 3m + 4n 3m 9m 2 +12mn +12mn + 16n 2 +4n +12mn +16n 2 9m 2 + 12mn + 0 9m 2 + 24mn + 16n 2


Download ppt "Warm Up Introduction to Polynomials and Adding and Subtracting Polynomials."

Similar presentations


Ads by Google