Download presentation
Presentation is loading. Please wait.
Published byDomenic Rose Modified over 9 years ago
1
Lecture 9 Dustin Lueker
2
2 Perfectly symmetric and bell-shaped Characterized by two parameters ◦ Mean = μ ◦ Standard Deviation = σ Standard Normal ◦ μ = 0 ◦ σ = 1 Solid Line STA 291 Summer 2010 Lecture 9
3
3 For a normally distributed random variable, find the following ◦ P(Z>.82) = ◦ P(-.2<Z<2.18) = STA 291 Summer 2010 Lecture 9
4
4 For a normal distribution, how many standard deviations from the mean is the 90 th percentile? ◦ What is the value of z such that 0.90 probability is less than z? P(Z<z) =.90 ◦ If 0.9 probability is less than z, then there is 0.4 probability between 0 and z Because there is 0.5 probability less than 0 This is because the entire curve has an area under it of 1, thus the area under half the curve is 0.5 z=1.28 The 90 th percentile of a normal distribution is 1.28 standard deviations above the mean STA 291 Summer 2010 Lecture 9
5
5 We can also use the table to find z-values for given probabilities Find the following ◦ P(Z>a) =.7224 a = ◦ P(Z<b) =.2090 b = STA 291 Summer 2010 Lecture 9
6
6 When values from an arbitrary normal distribution are converted to z-scores, then they have a standard normal distribution The conversion is done by subtracting the mean μ, and then dividing by the standard deviation σ
7
STA 291 Summer 2010 Lecture 97 The z-score for a value x of a random variable is the number of standard deviations that x is above μ ◦ If x is below μ, then the z-score is negative The z-score is used to compare values from different normal distributions Calculating ◦ Need to know x μ σ
8
STA 291 Summer 2010 Lecture 98 SAT Scores ◦ μ=500 ◦ σ=100 SAT score 700 has a z-score of z=2 Probability that a score is above 700 is the tail probability of z=2 Table 3 provides a probability of 0.4772 between mean=500 and 700 z=2 Right-tail probability for a score of 700 equals 0.5-0.4772=0.0228 2.28% of the SAT scores are above 700 ◦ Now find the probability of having a score below 450
9
STA 291 Summer 2010 Lecture 99 The z-score is used to compare values from different normal distributions ◦ SAT μ=500 σ=100 ◦ ACT μ=18 σ=6 ◦ What is better, 650 on the SAT or 25 on the ACT? Corresponding tail probabilities? How many percent have worse SAT or ACT scores? In other words, 650 and 25 correspond to what percentiles?
10
STA 291 Summer 2010 Lecture 910 The scores on the Psychomotor Development Index (PDI) are approximately normally distributed with mean 100 and standard deviation 15. An infant is selected at random. ◦ Find the probability that the infant’s PDI score is at least 100 P(X>100) ◦ Find the probability that PDI is between 97 and 103 P(97<X<103) ◦ Find the probability that PDI is less than 90 Would you be surprised to observe a value of 90?
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.