Download presentation
Presentation is loading. Please wait.
Published byJordan Hardy Modified over 9 years ago
1
P. Kravtsov 31.01.2016 1 Petersburg Nuclear Physics Institute DOUBLE POLARIZED DD-FUSION P. Kravtsov, N. Chernov, K. Grigoryev, I. Ivanov, E. Komarov, L. Kotchenda, M. Mikirtychyants, S. Sherman, S. Terekhin V. Trofimov, A. Vasilyev, M. Vznuzdaev Petersburg Nuclear Physics Institute, Gatchina, Russia R. Engels, L. Kroell, F. Rathmann, H. Stroeher IKP, Forschungszentrum Juelich, Germany H. Paetz Gen. Schieck IKP, University of Cologne, Germany M. Marusina, S. Kiselev University ITMO, St.Petersburg, Russia
2
P. Kravtsov 31.01.2016 2 Participating Institutions Financial support: ISTC project #3881 Deutsche Forschungsgemeinschaft Ministry of Science and Education Petersburg Nuclear Physics Institute, Russia Forschungszentrum Jülich, Germany Cologne University, Germany KVI, Gronningen, Netherlands University ITMO, St.Petersburg, Russia Ferrara University, Italy (?)
3
P. Kravtsov 31.01.2016 3 Double polarized dd-fusion d + d t + p 3 He + n Systematic measurements of the spin-correlation coefficients Cross section increase [R.M. Kulsrud et al., Phys. Rev. Lett. 49, 1248 (1982)] 3 He+d → 4 He+p : Factor ~1.5 at 430 keV [Ch. Leemann et al., Annals of Phys. 66, 810 (1971)] Neutrons suppression Quintet suppression factor [H. Paetz gen. Schieck, Eur. Phys. J. A 44, 321–354 (2010)] [Deltuva and Fonseca, Phys. Rev. C 81 (2010)] Trajectories control of the fusion products United efforts on the practical use of the polarized fusion Persistence of the Polarization in a Fusion Process [J.-P. Didelez and C. Deutsch. Few-Body Conference, Bonn (2009)] The main 4-nucleon fusion reaction – good testing ground for microscopic calculations
4
P. Kravtsov 31.01.2016 4 History Measurement of the polarization correlation coefficients in reactions 2 H(d, p) 3 H and 2 H(d, n) 3 He at low energies. 1976 B.P. Ad’jasevich, V.G. Antonenko
5
P. Kravtsov 31.01.2016 5 The Quintet suppression factor Direct experiment required!
6
P. Kravtsov 31.01.2016 6 Experiment layout Luminosity: 1.3∙10 25 1/cm 2 s → count rate: ~ 54/h (30keV) → 1 week of beam time
7
P. Kravtsov 31.01.2016 7 ABS (based on SAPIS ABS) ~6000 L/s
8
P. Kravtsov 31.01.2016 8 ABS dissociator Cooled nozzle (70-300K) plasma
9
P. Kravtsov 31.01.2016 9 Degree of dissociation and intensity measurements QMS Compression tube Faraday cup Two-coordinate table
10
P. Kravtsov 31.01.2016 10 POLIS Ion source 2010
11
P. Kravtsov 31.01.2016 11 POLIS. Control system. VERY old (is not supported 10 years) failed to work in KVI before departure compact (high channel density) widely used in our systems at BNL, PSI, GSI and AIRBUS test rig
12
P. Kravtsov 31.01.2016 12 POLIS. New control system (cooling + vacuum).
13
P. Kravtsov 31.01.2016 13 POLIS. Current state. Water cooling [no central cooling system] Vacuum system [pressure : 2·10 -7 mbar] Control system [vacuum and cooling only] o Magnets o Dissociator o RF units
14
P. Kravtsov 31.01.2016 14 Experimental hall 2009 2010 May 2011Sep 2011
15
P. Kravtsov 31.01.2016 15 Experimental hall. Equipment layout
16
P. Kravtsov 31.01.2016 16 Electronics platform
17
P. Kravtsov 31.01.2016 17 Cooling system System parameters: Liquid-air heatexchanger Cooling power: 100kW Coolant: water + 10% ethanol Flowrate: 1.4 l/s Temperature drop: 30-50°C
18
P. Kravtsov 31.01.2016 18 Interaction chamber and detector system Interaction chamber Helmholtz coils Detector system
19
P. Kravtsov 31.01.2016 19 Detector system. PIN diodes version. 4- detector setup with 44% filling ~300 Hamamatsu Si PIN photodiodes (S3590) 1cm 2 active area 300um depletion layer good energy resolution (17keV for 1MeV Carbon ions at RHIC) Proof of principle: L. Kroell. Diploma thesis, 2010. FZJ – RWTH.
20
P. Kravtsov 31.01.2016 20 Detector system Surface Barrier Detector 4- detector setup with 65% filling 50 square detector elements (33x33mm) 800 SBD cells (7x7mm)
21
P. Kravtsov 31.01.2016 21 Detector test bench Alpha-source: 239 Pu + 240 Pu = 80.4% 238 Pu + 241 Am = 19.6% 234 U + 235 U + 238 U 241 Am
22
P. Kravtsov 31.01.2016 22 Surface Barrier Detector. Energy resolution. ∆E~35keV Alpha-source: 234 U+ 235 U+ 238 U
23
P. Kravtsov 31.01.2016 23 Surface Barrier Detector. Dead layer measurements SRIMM calculations for 4 He ions in Au: 30keV shift => 100nm gold layer Alpha-source: 239 Pu 30keV
24
P. Kravtsov 31.01.2016 24 Surface Barrier Detector. Hydrogen effect 10 -3 mbar continuous 1100 mbar hydrogen Experiment condition: 10 -4 ÷10 -5 mbar
25
P. Kravtsov 31.01.2016 25 Readout electronics Readout requirements: 800 channels Total count rate ≤ 1kHz Standard interface (Ethernet?) Event synchronization for coincidence trigger CSP from ATLAS CSC [BNL]
26
P. Kravtsov 31.01.2016 26 Working Plan InfrastructureDecember 2012 Experimental hall preparationMarch 2011 Platform for electronicsMay 2011 Water cooling systemDecember 2012 Assemble and run the POLIS sourceJune 2013 Mechanical assemblingJune 2011 Vacuum + water distribution systemMarch 2012 Control systemFebruary 2012 Adjustments and tuningFebruary 2013 Solid target experimentJune 2013 Upgrade of the SAPIS ABSDecember 2013 Vacuum systemDecember 2012 Magnet system designDecember 2012 Dissociator designMarch 2012 Transition units designMarch 2013 ABS tests and tuningDecember 2013 Detector systemDecember 2012 Interaction chamberApril 2011 Surface barrier detector measurementsSeptember 2012 Mechanical support designSpring 2012 Readout electronics designFall 2012 Electronics productionDecember 2012
27
P. Kravtsov 31.01.2016 27 Thank you!
28
P. Kravtsov 31.01.2016 28
29
P. Kravtsov 31.01.2016 29 Hyperfine states
30
P. Kravtsov 31.01.2016 30 Count rate
31
P. Kravtsov 31.01.2016 31 Data situation Tagishi et al.; Phy. Rev. C 46 (1992) 1155-1158 [Analysing Powers: 2 H(d,p) 3 H, solid target] Becker et al. Few Body Sys. 13 (1992) [Analysing Powers] Imig et al. Phys.Rev. C 73 (2006) [Spin-Transfer Koeff.] All experiments were performed at solid targets
32
P. Kravtsov 31.01.2016 32 The Formula Spins of both deuterons are aligned: Only p z (q z ) and p zz (q zz ) ≠ 0 Only beam is polarized: (p i,j ≠ 0, q i,j = 0) σ(,Φ) = σ 0 () · {1 + 3/2 A y () p y + 1/2 A xz () p xz + 1/6 A xx-yy () p xx-zz + 2/3 A zz () p zz }
33
P. Kravtsov 31.01.2016 33 Unpolarized cross sections R. E. Brown, N. Jarmie, Phys. Rev. C 41 N4 (1990)
34
P. Kravtsov 31.01.2016 34 Polarization measurement
35
P. Kravtsov 31.01.2016 35 Deuterium polarization
36
P. Kravtsov 31.01.2016 36 Initial detector system 4- rotational gimbal support step motors with good angular resolution (~0.01 degree)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.