Download presentation
Presentation is loading. Please wait.
Published byTabitha Wells Modified over 9 years ago
1
ガンマ線強度関数法によるアプローチ H. Utsunomiya (Konan University) Outline 1.Methodology of the SF method 2.Applications to unstable nuclei along the valley of -stability 3. comments on a versatile application based on Coulomb dissociation experiments 2011 年度核データ研究会プログラム 2011 年 11 月 16 日 ( 水 ) – 17 日 ( 木 ) 日本原子力研究開発機構テクノ交流館リコッティ Approach by the -ray strength function method
2
Collaborators H. Utsunomiya a), H. Akimune a), T. Yamagata a), H. Toyokawa c), H. Harada d), F. Kitatani d), Y. -W. Lui e), S. Goriely b) I. Daoutidis b), D. P. Arteaga f), S. Hilaire g), and A. J. Koning h) a)Department of Physics, Konan University, Japan b)Institut d’Astronomie et d’Astrophysique, ULB, Belgium c) National Institute of Advanced Industrial Science and Technology, Japan d) Japan Atomic Energy Agency, Tokai, Naka-gun, Ibaraki 319-1195, Japan e) Cyclotron Institute, Texas A&M University, USA f) Institut de Physique Nucléaire, Université Paris-Sud, France g) CEA,DAM, DIF, Arpajon, France h) Nuclear Research and Consultancy Group, The Netherlands
3
Radiative neutron capture cross sections for unstable nuclei in nuclear engineering and nuclear astrophysics Direct measurements at CERN n-TOF, LANSCE-DANCE, Frankfurt-FRANZ and J-Parc ANNRI facilities can target some of unstable nuclei along the valley of -stability if samples can be prepared. ---> s-process Indirect experimental method is called in for unstable nuclei along the valley of -stability ---> s-process, neutron-rich region ---> r-process surrogate reaction technique ANY OTHER?
4
follows the statistical model of the radiative neuron capture in the formation of a compound nucleus and its decay by using experimentally-constrained SF. -ray strength function method H. Utsunomiya et al., PRC80 (2009) n + A X A+1 X E, J, A X(n, ) A+1 X Radiative neutron capture continuum SF NLD decay process
5
Total transmission coefficient - ray strength function nuclear level density X=E, M =1, 2, … SF method neutron resonance spacing low-lying levels source of uncertainty Hauser-Feshbach model cross section for A X(n, ) A+1 X After integrating over J and π
6
-ray strength function: nuclear statistical quantity interconnecting (n, ) and ( ,n) cross sections in the HF model calculation n+ A X A+1 X E, J, A X(n, ) A+1 X A+1 X( ,n) A X Photoneutron emission Radiative neutron capture Brink Hypothesis continuum
7
SnSn GDR PDR, M1 Structure of -ray strength function Primary strength E1 strength in the low- energy tail of GDR Extra strengths 6 – 10 MeV
8
SnSn ( ,n) GDR Methodology of SF method STEP 1 Measurements of ( ,n) c.s. near Sn A-1 A A ( ,n) SF STEP 1
9
SnSn Methodology of SF method STEP 2 Normalization of SF Extrapolation of SF by models SnSn ( ,n) GDR A-1 A A ( ,n) SF STEP 1
10
JUSTIFICATION BY REPRODUCING KNOWN (n, ) C.S. Methodology of SF method STEP 2 known (n, ) SnSn SnSn ( ,n) GDR A-1 A A ( ,n) SF STEP 1
11
neutron capture by unstable nucleus Methodology of SF method STEP 3 (n, ) to be determined A+1 A+2 ( ,n) STEP 3 A+1 X(n, ) A+2 X known (n, ) A-1 A A ( ,n) STEP 1 STEP 2 Extrapolation is made in the same way as for stable isotopes. ( ,n) GDR SnSn STEP 1 STEP 2 SF
12
6 6 Sn 116 117 118119120 121 27 h 122 123 129 d 124 105 106 107 6.5 10 6 y 108 Pd 909192 93 1.53 10 6 y 94 95 64 d 96 Zr 77 78 79 2.95 10 3 y 80 Se 76 75 120 d 89 3.27 d 104 6 6 115 Applications LLFP (long lived fission products) nuclear waste Astrophysical significance Present ( ,n) measurements Existing (n, ) data 7 3 5 4 H.U. et al., PRC82 (2010) H. Utsunomiya et al., PRC80 (2009) H.U. et al., PRL100(2008) PRC81 (2010) To be published F. Kitatani et al. (n, ) c.s. to be deduced
13
Inverse Compton Scattering = E e /mc 2 “photon accelerator” Laser Compton scattering -ray beam
14
=1064, 532 nm AIST (National Institute of Advanced Industrial Science and Technology)
15
Detector System Triple-ring neutron detector 20 3 He counters (4 x 8 x 8 ) embedded in polyethylene
17
6 6 Sn 116 117 118119120 121 27 h 122 123 129 d 124 6 6 115 Applications 7 H. Utsunomiya et al., PRC, in press (2011) H. Utsunomiya et al., PRC80 (2009)
18
STEP 1 Measurement of ( ,n) cross sections Sn isotopes
19
HFB+QRPA E1 strength supplemented with a pygmy E1 resonance in Gaussian shape E o ~ 8.5 MeV, ~ 2.0 MeV, o ~ 7 mb ~ 1% of TRK sum rule of GDR STEP 2 – Extrapolation of SF to the low-energy region HFB+QRPA + PDR
20
STEP 2 – Justification of the extrapolated SF
21
STEP 3 – Statistical model calculations of (n, ) cross sections for radioactive nuclei 121 Sn[T 1/2 =27 h] 123 Sn[T 1/2 =129 d] Uncertainties: 30-40% Uncertainties: a factor of 3
22
93 Zr[T 1/2 =1.5×10 6 y] Results for Zr isotopes long-lived fission product nuclear waste
23
95 Zr[T 1/2 =64 d] s-process branching 30-40% uncertainties
24
107 Pd[T 1/2 =6.5×10 6 y] long-lived fission product nuclear waste 30-40% uncertainties stem from NLD
25
Coulomb dissociation in the SF method (n, ) to be determined by SF method A A A+1 ( ,n) by Coulomb dissociation s-process branching nucleus
26
s-process branching nuclei F. Käppeler et al., Rev. Mod. Phys. 83, 157 (2011)
27
Coulomb dissociation experiments s-process branching nucleihalflife(yr)Coulomb dissociation (n, ) data 134Cs,135Cs2.0652, 2.3× 10 6 136Cs,135Cs,134Cs133Cs 152Eu*13.537153Eu, 152Eu151Eu 154Eu,155Eu8.593, 4.753156Eu,155Eu,154Eu153Eu 160Tb0.198161Tb,160Tn159Tb 163Ho4570164Ho,166Ho165Ho 170Tm,171Tm0.352, 1.921172Tm,171Tm,170Tm169Tm 179Ta1.82180Ta,182Ta181Ta 204Tl3.78205Tl,204Tl203Tl 11 branching nuclei 18 Coulomb dissociations F. Käppeler et al., Rev. Mod. Phys. 83, 157 (2011)
28
Ambitious application of the SF method to the r-process The astrophysical significance is controversial ! BUT this would be the first application to a very neutron-rich nucleus. A pioneering work is in progress. 1) A systematic study of the SF for Sn isotopes 116Sn,…., 124Sn (7 stable) → → → 132Sn 132Sn( ,n) data: GSI Coulomb dissociation data for 132Sn 131 Sn(n, ) 132 Sn cross sections in the r-process nucleosynthesis
29
Summary SF method: (n, ) c.s. for unstable nuclei 1. Nuclear Physics Experiment: ( ,n) c.s. measurements real photons for stable nuclei virtual photons for unstable nuclei (CD) 2. Nuclear Theory: models of SF models of NLD primary strength: low-energy E1 of GDR extra strengths: PDR, M1 3. Coulomb dissociation experiments play a key role in a versatile application of the SF method. SAMURAI + NEBURA @ RIKEN-RIBF ALADIN + LAND @GSI
30
Neutron beam Photon beamRI beam Determination of (n, ) CS for unstable nuclei 直接測定 ガンマ線強度関数法 ( ,n) (n, ) 原子力核データ、宇宙核物理( s-process ) along the valley of -stability 宇宙核物理 r-process p-process far from stability
31
Comparison with the surrogate reaction technique Forssèn et al., PRC75, 055807 (2007) 93Zr(n, )94Zr 95Zr(n, )96Zr 1. The surrogate reaction technique gives larger cross sections by a factor of ~ 3 than the SF method. The surrogate reaction technique gives similar cross sections to those given by the SF method provided that a choice is made of the Lorentian type of SF. Zr isotopes
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.