Presentation is loading. Please wait.

Presentation is loading. Please wait.

1/31/20161By Chtan FYHS-Kulai Chapter 39. 1/31/20162By Chtan FYHS-Kulai.

Similar presentations


Presentation on theme: "1/31/20161By Chtan FYHS-Kulai Chapter 39. 1/31/20162By Chtan FYHS-Kulai."— Presentation transcript:

1 1/31/20161By Chtan FYHS-Kulai Chapter 39

2 1/31/20162By Chtan FYHS-Kulai

3 1/31/20163By Chtan FYHS-Kulai consist of all positive and negative integers, all rational numbers and irrational numbers.

4 1/31/20164By Chtan FYHS-Kulai Rational numbers are of the form p/q, where p, q are integers. Irrational numbers are

5 1/31/2016By Chtan FYHS-Kulai5

6 1/31/2016By Chtan FYHS-Kulai6 Notation Algebra form Trigonometric form index form

7 1/31/20167By Chtan FYHS-Kulai Complex numbers are defined as numbers of the form : or

8 1/31/2016By Chtan FYHS-Kulai8 is represented by are real numbers. A complex number consists of 2 parts. Real part and imaginary part.

9 1/31/2016By Chtan FYHS-Kulai9 Notes: 1.When b=0, the complex number is Real 2.When a=0, the complex number is imaginary 3.The complex number is zero iff a=b=0

10 VENN DIAGRAM Representation All numbers belong to the Complex number field, C. The Real numbers, R, and the imaginary numbers, i, are subsets of C as illustrated below. Real Numbers a + 0i Imaginary Numbers 0 + bi Complex Numbers a + bi

11 1/31/2016By Chtan FYHS-Kulai11

12 1/31/2016By Chtan FYHS-Kulai12 Conjugate complex numbers The complex numbers and are called conjugate numbers.

13 1/31/2016By Chtan FYHS-Kulai13 is conjugate of.

14 1/31/2016By Chtan FYHS-Kulai14 e.g. 1 Solve the quadratic equation Soln:

15 1/31/2016By Chtan FYHS-Kulai15 e.g. 2 Factorise. Soln:

16 1/31/2016By Chtan FYHS-Kulai16 Representation of complex number in an Argand diagram

17 1/31/2016By Chtan FYHS-Kulai17 x y 0 P(a,b) P’(-a,-b) Argand diagram (Re) (Im)

18 1/31/2016By Chtan FYHS-Kulai18 e.g. 3 If P, Q represent the complex numbers 2+i, 4-3i in the Argand diagram, what complex number is represented by the mid-point of PQ?

19 1/31/2016By Chtan FYHS-Kulai19 Soln: x y 0 P(2,1) Q(4,-3) Mid-point of PQ is (3,-1) is the complex number. (Re) (Im)

20 1/31/2016By Chtan FYHS-Kulai20

21 1/31/2016By Chtan FYHS-Kulai21 Do pg.272 Ex 20a

22 1/31/2016By Chtan FYHS-Kulai22 Equality of complex numbers

23 1/31/2016By Chtan FYHS-Kulai23 The complex numbers and are said to be equal if, and only if, a=c and b=d.

24 1/31/2016By Chtan FYHS-Kulai24 e.g. 4 Find the values of x and y if (x+2y)+i(x-y)=1+4i. Soln: x+2y=1; x-y=4 2y+y=1-4; 3y=-3, y=-1 x-(-1)=4, x=4-1=3

25 1/31/2016By Chtan FYHS-Kulai25 Addition of complex numbers

26 1/31/2016By Chtan FYHS-Kulai26 If then

27 1/31/2016By Chtan FYHS-Kulai27 Subtraction of complex numbers

28 1/31/2016By Chtan FYHS-Kulai28 If then

29 1/31/2016By Chtan FYHS-Kulai29 Do pg.274 Ex 20b

30 1/31/2016By Chtan FYHS-Kulai30 Multiplication of complex numbers

31 1/31/2016By Chtan FYHS-Kulai31 e.g. 5 If, find the values of (i) (ii) Soln: (i) (ii)

32 1/31/2016By Chtan FYHS-Kulai32 If then

33 1/31/2016By Chtan FYHS-Kulai33 Division of complex numbers

34 1/31/2016By Chtan FYHS-Kulai34 If then

35 1/31/2016By Chtan FYHS-Kulai35 e.g. 6 Express in the form. Soln:

36 1/31/2016By Chtan FYHS-Kulai36 e.g. 7

37 1/31/2016By Chtan FYHS-Kulai37 e.g. 8 If z=1+2i is a solution of the equation where a, b are real, find the values of a and b and verify that z=1-2i is also a solution of the equation.

38 1/31/2016By Chtan FYHS-Kulai38 The cube roots of unity

39 1/31/2016By Chtan FYHS-Kulai39 If is a cube root of 1,

40 1/31/2016By Chtan FYHS-Kulai40

41 1/31/2016By Chtan FYHS-Kulai41 Notice that the complex roots have the property that one is the square of the other,

42 1/31/2016By Chtan FYHS-Kulai42 let So the cube roots of unity can be expressed as

43 1/31/2016By Chtan FYHS-Kulai43 If we take then or vice versa.

44 1/31/2016By Chtan FYHS-Kulai44 (1) As is a solution of (2) As is a solution of

45 1/31/2016By Chtan FYHS-Kulai45 (3) (4) (5) … etc

46 1/31/2016By Chtan FYHS-Kulai46 e.g. 9 Solve the equation.

47 1/31/2016By Chtan FYHS-Kulai47 e.g. 10

48 1/31/2016By Chtan FYHS-Kulai48 Soln:

49 1/31/2016By Chtan FYHS-Kulai49 Do pg.277 Ex 20c

50 1/31/201650By Chtan FYHS-Kulai

51 1/31/2016By Chtan FYHS-Kulai51 x y 0 P(x,y) x y r Is called the principal value Argand diagram r is called the modulus of z, θ(in radians) is called the argument of z.

52 1/31/2016By Chtan FYHS-Kulai52 From the Argand diagram, This is called the (r,θ) or modulus-argument form of the complex number

53 1/31/2016By Chtan FYHS-Kulai53 This is called the (r,θ) or modulus-argument form of the complex number or modulus-amplitude form of the complex number

54 1/31/2016By Chtan FYHS-Kulai54 modulus argument (or amplitude)

55 1/31/2016By Chtan FYHS-Kulai55 OR

56 1/31/2016By Chtan FYHS-Kulai56 One important formulae : Refer to Example 15 below

57 1/31/2016By Chtan FYHS-Kulai57 Representation of cube roots of unity in Argand diagram y x 0 is an equilateral triangle.

58 1/31/2016By Chtan FYHS-Kulai58 Geometrically, if P1, P2, P3 represent the number z1, z2 and z1+z2. Then, you see the following diagram : y x 0 z2 z1 z1+z2

59 1/31/2016By Chtan FYHS-Kulai59 Multiplication and division of two complex numbers (in modulus- argument form)

60 1/31/2016By Chtan FYHS-Kulai60 If then

61 1/31/2016By Chtan FYHS-Kulai61

62 1/31/2016By Chtan FYHS-Kulai62 e.g. 11 If find

63 1/31/2016By Chtan FYHS-Kulai63 e.g. 12 If, find the value of m.

64 1/31/2016By Chtan FYHS-Kulai64 e.g. 13 If, then

65 1/31/2016By Chtan FYHS-Kulai65 e.g. 14 If, then

66 1/31/2016By Chtan FYHS-Kulai66 Miscellaneous examples

67 1/31/2016By Chtan FYHS-Kulai67 e.g. 15 Evaluate

68 1/31/2016By Chtan FYHS-Kulai68 e.g. 16 Given, find.

69 1/31/2016By Chtan FYHS-Kulai69 e.g. 17 is an imaginary number,

70 1/31/2016By Chtan FYHS-Kulai70 e.g. 18 If, then

71 1/31/2016By Chtan FYHS-Kulai71 e.g. 19 Prove that

72 1/31/2016By Chtan FYHS-Kulai72 e.g. 20 Find the value

73 1/31/2016By Chtan FYHS-Kulai73 e.g. 21 Prove that

74 1/31/2016By Chtan FYHS-Kulai74 e.g. 22 Simplify

75 1/31/2016By Chtan FYHS-Kulai75 e.g. 23 If Show that

76 1/31/2016By Chtan FYHS-Kulai76 e.g. 24 If Prove that

77 1/31/2016By Chtan FYHS-Kulai77 e.g. 25 If Prove that

78 1/31/2016By Chtan FYHS-Kulai78 Addendum

79 1/31/2016By Chtan FYHS-Kulai79 In general, z is a complex number then, represent a circle with centre at (0,0) and radius “a”. (1)

80 1/31/2016By Chtan FYHS-Kulai80 (2) represent a straight line with gradient=tanθ.

81 1/31/2016By Chtan FYHS-Kulai81 (3)(3) If 4 points P1, P2, P3, P4 are concyclic, then

82 1/31/2016By Chtan FYHS-Kulai82 0 y x P1, P2, P3, P4 are concyclic

83 1/31/2016By Chtan FYHS-Kulai83 (4)(4) If 3 points P1, P2, P3 formed an equilateral triangle,

84 1/31/2016By Chtan FYHS-Kulai84 Do pg.280 Ex 20d & Misc 20

85 1/31/2016By Chtan FYHS-Kulai85 Do pg.127 Ex 6a Pg. 130 Ex 6b Pg. 138 Ex 6d q1-q10, q12, q14, q16 No need to do Pg. 135 Ex 6c, pg. 139 Misc

86 1/31/2016By Chtan FYHS-Kulai86 The end


Download ppt "1/31/20161By Chtan FYHS-Kulai Chapter 39. 1/31/20162By Chtan FYHS-Kulai."

Similar presentations


Ads by Google