Download presentation
Presentation is loading. Please wait.
Published byJasmine Morrison Modified over 11 years ago
1
Federico Spanna: Regione Piemonte - Agrometeorological Service federico.spanna@regione.piemonte.it federico.spanna@regione.piemonte.it Alberto Rainero: S.I.T. – Alessandria County Council albertorainero@libero.it Workshop on climatic analysis and mapping for agriculture (14-17 june 2005, Bologna, Italy)
2
Contents Context, aim, method Multivariate analysis Spatial representation
3
Territorial representation Contoured map showing elevation 50 % mountainous 30 % plain 20 % hill
4
Distribution of meteorological stations 150 agrometeorological stations (RAM) 300 hydrographic station
5
Aim Georepresentation of agrometeorological variables as influenced by land morphology
6
Methodology Analysis and selection of main morphological informations Individuation of homogeneous agrometeorological areas (multivariate analysis) Spatial representation (statistical multiregressive analysis)
7
Contents Context, aim, method Multivariate analysis Spatial representation
8
Morphological features: 1- agrarian landscape map 3 perceptive levels Scale 1:100.000 Cultivation Agrarian trend
9
Morphological features: 2 – soil yield Scale 1:100.000 9 classes Potential soil use for crops
10
Morphological features: 3 – Corine coverage Actual soil use Scale 1:100.000 44 classes
11
Morphological features: 4 - morphology Height Slope Exposure Distance from valley bottom Piedmont Digital Elevation Model (DEM) Scale 1:100.000
12
Territorial information found Multivariate analysis Homogeneous areas features Slope Exposure Height Yield soil use Corine coverage Description of morphological and topological parameters Categorical qualitative table
13
Aggregation classes 92 stations 91 typologies 8 cluster (homogeneous areas)
14
Objective function 8 areas
15
Contents Context, aim, method Multivariate analysis Spatial representation
16
Homogeneous areas representation Watershed Borough boundaries
17
Spatial interpolation Algorithm Station cluster Influence territorial area Meteo information M Morphological parameters x i Morphological parameters Meteo information synthesis M=F(x i ) ?
18
Multiregressive analysis M = F(x i ) M = kp*H + kd*S + ke*E + kq*D Meteo information: dependent variableM Morphological variables: independentH, S, E, D Multiple regression Height, Slope, Exposure, River bed distance
19
+H *kh +S *ks Substrata superposition M +E *ke +D *kd
20
Coefficient exploration Sample Dependent variable Performance (R 2 ) Period All (92) station Mean of T min 20030,139 Area 1 Stations Mean of T min february0,791 Area 1 Stations Mean of T max autumn0,784
21
Traditional representation Field of Temperature range
22
Asti Area 1 Mean of T min - 2003
23
Barolo Area Mean of T min – 02/03
24
Barolo Area
25
Asti and Cuneo Province Area 2 Mean of T mean - Spring 02/03
26
ASTI and Cuneo Province Area 2
27
Conclusions Innovative and significant methodology for a youngagrometeorological region Map developing of the most important climatic indexes (ex. Winkler, Huglin, Thermal excursions etc.) Production of useful supports for local advisors and farmers
29
Backup
32
Area del Barolo
33
Aree dellAstigiano e del Cuneese
34
Area dellAstigiano
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.