Download presentation
Presentation is loading. Please wait.
Published byEgbert Hamilton Modified over 9 years ago
1
Sasha Kuntsevich, Nimrod Teneh, Vladimir. Pudalov, Teun Klapwijk Aknowlegments: A. Finkelstein Spin Susceptibility of a 2D Electron Gas M. Reznikov
2
V. Pudalov at al., 2001 Metal-Insulator Transition in a Silicon Inversion Layer
3
Theory: interaction and disorder enhanced susceptibility A. Finkelstein (1983), Castellani at al.,(1984) Temperature-dependent correction to Pauli Susceptibility due to electron-electron interaction ( A. Finkelstein, A. Shekhter, 2006 ) Motivation A. Chubukov, D. Maslov, 2009
4
Shubnikov - de Haas measurements of the Spin Polarization F. Fang and P. Stiles, (1968), T. Okamoto at al., (1999) S. Vitkalov at al. (2000), V. Pudalov at.al., (2001) 2 4 6 7 rsrs Requires low temperatures and finite magnetic fields ( B B>k B T) Problematic in the vicinity of the MIT AdvantagesDisadvantages Straightforward separation between orbital (diamagnetic) and spin contributions
5
Analysis of the in-plane magnetoresistance Advantages: Does not require high magnetic field Critical density is accessible Disadvantages: Heavily interpretation-dependent: a) Saturation of the in-plane magnetoresistance full polarization incorrect at low B (e.g E. Tutuc at al.) b) The saturation field may be recovered on the basis of the low field magnetoresistance A. Shashkin et al. PLR, 2001, S. Vitkalov et al. PRL 2001
6
In-plane magnetoresistance A. Shashkin et al. PLR, 2001, S. Vitkalov et al. PRL 2001
7
Samples Russian samples, beginning of 80 th, Holland samples, mid 80 th, ¼ 3.4 x10 4 cm 2 /Vs @1.7K Si Field effect transistors Typical energy scales p ¼ 3 ps ¼ ~ /(k B ¢ 2K)
8
The Principle of the Measurements Maxwell relation: eVGeVG 00 ee W Al W 2D
9
Experimental setup _ + VGVG Out Modulated magnetic field B+ Current Amplifier Ohmic contact Gate SiO 2 Si 2D electron gas AdvantagesDisadvantages Measures thermodynamic magnetization Accessibility of the “Insulating phase” Does not require low temperatures Measures thermodynamic magnetization Measures, which is unknown at small n; Requires assumptions for the integration
10
dm/dn, expectations for degenerate case no interactions B gg Polarization field
11
dm/dn, expectations for a single spin
12
Raw data, low fields
13
Raw data
14
d /dn(n), T=1.7 ¥ 13K, Russian sample
15
d /dn(n), Holland sample
16
Problem O. Prus, Y. Yaish, M. Reznikov, U. Sivan, and V. Pudalov, PRB 2003 : Assumption: at large density the susceptibility is the renormalized Pauli one This assumption happened to be wrong!
17
(n), T=1.7 ¥ 13K
18
(n), T=1.7 ¥ 13K, offset 0.7V offset 0.7V offset 0.5V
19
Old results (Prus et al, 2003)
20
Susceptibility vs. Temperature
21
Field dependence of the magnetic moment
22
Susceptibility in at B=2T
23
Maximal magnetization @ 1.7K
24
Raw data
25
-dM/dn at 1.5 10 11 cm -2 B
26
Comparison with Transport Measurements
27
Conclusions Low-field susceptibility is many times the Pauli one Susceptibility is strongly temperature dependent even at high densities (most surprising) Low temperature susceptibility is strongly nonlinear The field scale for the nonlinearity is B c ¼ k B T/6 B
28
ВЫВОД О ФМ НЕУСТОЙЧИВОСТИ; (B>1.5 Т, Т<0.6К) НЕТ ЗАВИСИМОСТИ ВОСПРИИМЧИВОСТИ ОТ Т. ТД измерения: ранние результаты. A. Shashkin et al., PRL 96 036403 (2006). Порядок величины! Гц Образец закрывается при малых n
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.