Presentation is loading. Please wait.

Presentation is loading. Please wait.

Sasha Kuntsevich, Nimrod Teneh, Vladimir. Pudalov, Teun Klapwijk Aknowlegments: A. Finkelstein Spin Susceptibility of a 2D Electron Gas M. Reznikov.

Similar presentations


Presentation on theme: "Sasha Kuntsevich, Nimrod Teneh, Vladimir. Pudalov, Teun Klapwijk Aknowlegments: A. Finkelstein Spin Susceptibility of a 2D Electron Gas M. Reznikov."— Presentation transcript:

1 Sasha Kuntsevich, Nimrod Teneh, Vladimir. Pudalov, Teun Klapwijk Aknowlegments: A. Finkelstein Spin Susceptibility of a 2D Electron Gas M. Reznikov

2 V. Pudalov at al., 2001 Metal-Insulator Transition in a Silicon Inversion Layer

3 Theory: interaction and disorder enhanced susceptibility A. Finkelstein (1983), Castellani at al.,(1984) Temperature-dependent correction to Pauli Susceptibility due to electron-electron interaction ( A. Finkelstein, A. Shekhter, 2006 ) Motivation A. Chubukov, D. Maslov, 2009

4 Shubnikov - de Haas measurements of the Spin Polarization F. Fang and P. Stiles, (1968), T. Okamoto at al., (1999) S. Vitkalov at al. (2000), V. Pudalov at.al., (2001) 2 4 6 7 rsrs Requires low temperatures and finite magnetic fields (  B B>k B T) Problematic in the vicinity of the MIT AdvantagesDisadvantages Straightforward separation between orbital (diamagnetic) and spin contributions

5 Analysis of the in-plane magnetoresistance Advantages: Does not require high magnetic field Critical density is accessible Disadvantages: Heavily interpretation-dependent: a) Saturation of the in-plane magnetoresistance full polarization incorrect at low B (e.g E. Tutuc at al.) b) The saturation field may be recovered on the basis of the low field magnetoresistance A. Shashkin et al. PLR, 2001, S. Vitkalov et al. PRL 2001

6 In-plane magnetoresistance A. Shashkin et al. PLR, 2001, S. Vitkalov et al. PRL 2001

7 Samples Russian samples, beginning of 80 th, Holland samples, mid 80 th,  ¼ 3.4 x10 4 cm 2 /Vs @1.7K Si Field effect transistors Typical energy scales  p ¼ 3 ps ¼ ~ /(k B ¢ 2K)

8 The Principle of the Measurements Maxwell relation:  eVGeVG 00 ee W Al W 2D

9 Experimental setup _ + VGVG Out Modulated magnetic field B+  Current Amplifier Ohmic contact Gate SiO 2 Si 2D electron gas AdvantagesDisadvantages Measures thermodynamic magnetization Accessibility of the “Insulating phase” Does not require low temperatures Measures thermodynamic magnetization Measures, which is unknown at small n; Requires assumptions for the integration

10 dm/dn, expectations for degenerate case no interactions B  gg Polarization field

11 dm/dn, expectations for a single spin

12 Raw data, low fields

13 Raw data

14 d  /dn(n), T=1.7 ¥ 13K, Russian sample

15 d  /dn(n), Holland sample

16 Problem O. Prus, Y. Yaish, M. Reznikov, U. Sivan, and V. Pudalov, PRB 2003 : Assumption: at large density the susceptibility is the renormalized Pauli one This assumption happened to be wrong!

17  (n), T=1.7 ¥ 13K

18  (n), T=1.7 ¥ 13K, offset 0.7V offset 0.7V offset 0.5V

19 Old results (Prus et al, 2003)

20 Susceptibility vs. Temperature

21 Field dependence of the magnetic moment

22 Susceptibility in at B=2T

23 Maximal magnetization @ 1.7K

24 Raw data

25 -dM/dn at 1.5 10 11 cm -2 B

26 Comparison with Transport Measurements

27 Conclusions Low-field susceptibility is many times the Pauli one Susceptibility is strongly temperature dependent even at high densities (most surprising) Low temperature susceptibility is strongly nonlinear The field scale for the nonlinearity is B c ¼ k B T/6  B

28 ВЫВОД О ФМ НЕУСТОЙЧИВОСТИ; (B>1.5 Т, Т<0.6К) НЕТ ЗАВИСИМОСТИ ВОСПРИИМЧИВОСТИ ОТ Т. ТД измерения: ранние результаты. A. Shashkin et al., PRL 96 036403 (2006). Порядок величины!  Гц  Образец закрывается при малых n


Download ppt "Sasha Kuntsevich, Nimrod Teneh, Vladimir. Pudalov, Teun Klapwijk Aknowlegments: A. Finkelstein Spin Susceptibility of a 2D Electron Gas M. Reznikov."

Similar presentations


Ads by Google