Presentation is loading. Please wait.

Presentation is loading. Please wait.

Comparison between ūu and d̄d productions by the γp→ π - Δ ++ and π + Δ 0 reactions at forward π angles at E γ =1.5-3.0 GeV Oct/5/2015 RCNP, Osaka University.

Similar presentations


Presentation on theme: "Comparison between ūu and d̄d productions by the γp→ π - Δ ++ and π + Δ 0 reactions at forward π angles at E γ =1.5-3.0 GeV Oct/5/2015 RCNP, Osaka University."— Presentation transcript:

1 Comparison between ūu and d̄d productions by the γp→ π - Δ ++ and π + Δ 0 reactions at forward π angles at E γ =1.5-3.0 GeV Oct/5/2015 RCNP, Osaka University Hideki Kohri 1

2 Contents SPring-8 LEPS facility New pion data Development of polarized HD target Development of LEPS2 beam line Summary 2

3 SPring-8 LEPS facility 3

4 Electron storage ring 8 GeV electron beam Diameter ≈457 m RF 508 MHz 1‐bunch spread is within σ = 12 psec . Beam Current = 100 mA 120 km distant from Osaka Super Photon ring ‐ 8 GeV 4

5 SPring-8 beamline map LEPS 5

6 LEPS facility LEPS experiment started in 2000 b) Laser hutch a) SPring-8 SR ring c) Experimental hutch Inverse Compton  -ray Laser light 8 GeV electron Recoil electron Tagging counter Collision Energy spectrum of BCS photons Bremsstrahlung Backward-Compton scattering 36m 70m SSD + Sc hodoscope ScFi + Sc hodoscope Beam intensity < 2.5 x 10 6 for E  =1.5-2.4 GeV (355 nm laser) < 3.0 x 10 5 for E  =1.5-3.0 GeV (266 nm laser) 6

7  LEPS detector setup 1m1m TOF wall MWDC 2 MWDC 3 MWDC 1 Dipole Magnet (0.7 T) Target Silicon Vertex Detector Aerogel Cerenkov (n=1.03) Start counter LEPS detector was optimized to detect  meson decaying to K + K - at forward angles for removing e + e - BG also removed pions 7

8 LEPS publication Strangeness  p -> K + ,  p -> K +  0 R.G.T. Zegers et al. Phys. Rev. Lett. 91 (2003) 092001  p -> K + ,  p -> K +  0 M. Sumihama et al. Phys. Rev. C 73 (2006) 035214  n -> K +  - H. Kohri et al. Phys. Rev. Lett. 97 (2006) 082003  p -> K +  K. Hicks et al. Phys. Rev. C 76 (2007) 042201(R)  p -> K +  - (1385) K. Hicks et al. Phys. Rev. Lett. 102 (2009) 012501  p -> K +  (1405),   (1385) M. Niiyama et al. Phys. Rev. C 78 (2008) 035202  p -> K +  (1520) N. Muramatsu et al. Phys. Rev. Lett. 103 (2009) 012001  p -> K +  (1520) H. Kohri et al. Phys. Rev. Lett. 104 (2010) 172001  p -> K *0  + S.H. Hwang et al. Phys. Rev. Lett. 108 (2012) 092001  d -> K +  - X A.O. Tokiyasu et al. Phys. Lett. B 728 (2014) 616  meson  meson production on Li, C, Al, Cu T. Ishikawa et al. Phys. Lett. B 608 (2005) 215  p  p T. Mibe et al. Phys. Rev. Lett. 95 (2005) 182001  d ->  d W.C. Chang et al. Phys. Lett. B 658 (2008) 209  n ->  n W.C. Chang et al. Phys. Lett. B 684 (2010) 6  p ->  p,  n ->  n W.C. Chang et al. Phys Rev. C 82 (2010) 015205 Pseudoscaler  p ->  0 p M. Sumihama et al. Phys. Lett B 657 (2007) 32  p ->  p M. Sumihama et al. Phys. Rev. C 80 (2009) 052201(R)  p ->  p,  ’p Y. Morino et al. Prog. Theor. Exp. Phys. (2015) 013D01 Exotic Pentaquark search T. Nakano et al. Phys. Rev. Lett. 91 (2003) 012002 Pentaquark search T. Nakano et al. Phys. Rev. C 79 (2009) 025210 8

9 LEPS publication Strangeness  p -> K + ,  p -> K +  0 R.G.T. Zegers et al. Phys. Rev. Lett. 91 (2003) 092001  p -> K + ,  p -> K +  0 M. Sumihama et al. Phys. Rev. C 73 (2006) 035214   n -> K +  - H. Kohri et al. Phys. Rev. Lett. 97 (2006) 082003  p -> K +  K. Hicks et al. Phys. Rev. C 76 (2007) 042201(R)  p -> K +  - (1385) K. Hicks et al. Phys. Rev. Lett. 102 (2009) 012501  p -> K +  (1405),   (1385) M. Niiyama et al. Phys. Rev. C 78 (2008) 035202  p -> K +  (1520) N. Muramatsu et al. Phys. Rev. Lett. 103 (2009) 012001  p -> K +  (1520) H. Kohri et al. Phys. Rev. Lett. 104 (2010) 172001  p -> K *0  + S.H. Hwang et al. Phys. Rev. Lett. 108 (2012) 092001  d -> K +  - X A.O. Tokiyasu et al. Phys. Lett. B 728 (2014) 616  meson  meson production on Li, C, Al, Cu T. Ishikawa et al. Phys. Lett. B 608 (2005) 215  p  p T. Mibe et al. Phys. Rev. Lett. 95 (2005) 182001  d ->  d W.C. Chang et al. Phys. Lett. B 658 (2008) 209  n ->  n W.C. Chang et al. Phys. Lett. B 684 (2010) 6  p ->  p,  n ->  n W.C. Chang et al. Phys Rev. C 82 (2010) 015205 Pseudoscaler  p ->  0 p M. Sumihama et al. Phys. Lett B 657 (2007) 32  p ->  p M. Sumihama et al. Phys. Rev. C 80 (2009) 052201(R)  p ->  p,  ’p Y. Morino et al. Prog. Theor. Exp. Phys. (2015) 013D01 Exotic Pentaquark search T. Nakano et al. Phys. Rev. Lett. 91 (2003) 012002 Pentaquark search T. Nakano et al. Phys. Rev. C 79 (2009) 025210 9

10 New pion data 10

11  New LEPS detector setup for taking pion data 1m1m TOF wall MWDC 2 MWDC 3 MWDC 1 Dipole Magnet (0.7 T) Target Silicon Vertex Detector Start counter LEPS detector was optimized to detect  meson decaying to K + K - at forward angles Aerogel Cerenkov counter was removed 11

12 High momentum  data taken in 2007 p( ,  + )X p( ,  - )X E  =1.5-3.0 GeV 0.7<cos   <1 12

13 Fundamental ūu and d̄d production Same acceptance Simultaneous measurements Same proton target ūu production is precisely compared with d̄d production by the γp→ π - Δ ++ and π + Δ 0 reactions 13

14 SAPHIR data published in 2005 C. Wu et al. (SAPHIR collaboration) Eur. Phys. Jour. A 23 (2005) 317     -> p  -      (  +  0 )/  (  -  ++ ) (+0)(+0)  (  -  ++ )   (?) E  (GeV) Clebsch-Gordan coefficients  * favors  +  0 channel 14 N * -> 3  -  ++ : 1  +  0  * -> 3  -  ++ : 4  +  0 Resonance effect t-channel LEPS energy No d  /dcos 

15 Physics motivation of  reactions at E  =1.5-3.0 GeV Low energy  E  =1.5 GeV Missing resonance search s- channel High energy  E  =3.0 GeV Precision of isospin rule is checked. Any other effect ? t- channel     p p p p          N*N* Isospin=1 Isospin=2  (  +  0 )/  (  -  ++ ) = 1/3  (  +  0 )/  (  -  ++ ) = 4/3  (  +  0 )/  (  -  ++ ) = 1/3  (  +  0 )/  (  -  ++ ) = 3  15

16  (     )/  (     ) ratio expected from Clebsch-Gordan coefficients I=1 (  or  ) exchange in the t-channel should be dominant at forward  angles. Deviation from 1/3 might suggest I=2 exotic meson exchange. Dominant 16

17 High momentum  data taken in 2007 p( ,  + )X p( ,  - )X E  =1.5-3.0 GeV 0.7<cos   <1 17

18 Preliminary differential cross sections for     and     p( ,  - )  ++ p( ,  + )  0 E  (GeV) d  /dcos  (  b) Preliminary 0.7<cos  <0.8 0.8<cos  <0.9 0.9<cos  <0.930.93<cos  <0.97 0.97<cos  < 1 0.7<cos  <0.8 0.8<cos  <0.9 0.9<cos  <0.93 0.93<cos  <0.97 0.97<cos  < 1 18

19 Preliminary ratio  (  +  0 )/  (  -  ++ ) 1/3 is expected from isospin=1 exchange in the t-channel Preliminary 19 Interference between  and  ? (d̄d production / ūu production )

20 Ratio  (  +  0 )/  (  -  ++ ) at 0.966<cos  <1  (  +  0 )/  (  -  ++ ) Average of 29 points is 0.404+-0.005. This is larger than 0.333 by 21+-2%. -0.04 < t < 0 GeV 2 /c 2 20 Preliminary d̄d production is slightly enhanced compared with ūu production (d̄d production / ūu production )

21 Isospin=1  exchange in the t-channel must be the dominant reaction at 0.966<cos  <1 t-channel  (  +  0 )/  (  -  ++ ) = 0.404 +- 0.005 may suggest the precision of Clebsch-Gordan coefficients is about 20% in photoproduction. No other photoproduction reactions can check this more precisely. 21

22 Isospin=2 exotic meson exchange in the t-channel may increase the ratio if it exists t-channel 22

23 Another explanation Proton charge distribution Pion cloud model Small momentum transfer -0.04 < t < 0 GeV 2 /c 2   (ud̄) enhances     procution (d̄d production)  Larger          Bare proton Pion cloud (ud) 23 We do not know how large the sea quark contribution is. Can we know it from these data ? (d̄d / ūu )

24 Impact parameter estimated from uncertainty principle (  x  p ~ h) ~ 24

25 Cross section ratio  (     )/  (      25  (  +  0 )/  (  -  ++ ) t (GeV 2 /c 2 )Estimated impact parameter (fm) 0.7<cos   <1 E  =1.5-3.0 GeV Preliminary ūu production may be suppressed by Pauli principle (d̄d production / ūu production )

26 Photon beam asymmetries 0.9<cos   <1 0.8<cos   <0.9 0.7<cos   =0.8  -  ++  +  0 Azimuthal Angle  (deg.) Nv-Nh Nv+Nh Nv-Nh Nv+Nh 0.7<cos   <0.8 0.8<cos   <0.9 0.9<cos   <1 E  =2.9-3.0 GeV E  =2.8-3.0 GeV E  = 2.8-3.0 GeV E  =2.8-3.0 GeV 26

27 Preliminary photon beam asymmetry for  p ->     and  p ->     reactions  exchange  exchange Preliminary 27

28 Development of polarized HD target 28

29 16 observables for the  N K  and K  reaction Observable Polarization Beam Target Hyperon Cross section & Single polarization d  /d  - - -  linear - - T - transverse - P - - y Beam-Target double polarization G linear z - H linear x - E circular z - F circular x - Beam and Recoil hyperon double polarization Ox linear - x Oz linear - z Cx circular - x Cz circular - z Target and Recoil hyperon double polarization Tx - x x Tz - x z Lx - z x Lz - z z LEPS measured two observables only. Polarized target and large acceptance spectrometer are needed for complete measurements for advanced N * studies. 29

30 Refrigerators used for polarized HD target SPring-8 RCNP RCNP -> SPring-8 We obtained from ORSAY GRAAL 30

31 N - = N exp(- E - /kT) N + = N exp(- E + /kT) N - /N + = exp((E - - E + )/kT) = exp(  E/kT) = exp(2  p B/kT) k: Boltzmann constant  p : Proton magnetic moment B: Magnetic field T: Temperature Proton polarization P = (N + - N - )/(N + + N - ) = tanh(  p B/kT) E Boltzmann law of statistical mechanics E+E+ E-E- Temperature (mK) Polarization (%) at 17 Tesla H polarization D polarization N 31

32 Dilution refrigerator (DRS) Leiden Cryogenics DRS-2500 ( 3 He/ 4 He dilution refrigerator) Cooling power 2500 μ W at 120 mK Lowest temperature 6 mK Polarization is grown by cooling HD at low temperature at high magnetic field. Superconducting magnet B=17 Tesla 2-3 months later Polarization is frozen. Temperature can be raised to 0.3 K and magnetic field can be decreased to 0.9 Tesla during experiments at SPring-8. DRS 32

33 Polarization degree of proton in HD Aging HD 1 2 3 4 5 6 Year 2008 2011 2012 2013 2014 2015 P H (%) 40% -- 30% 18% 42% 44+-1% NMR Calibration data at T=4.2 K, B=0.9 Tesla Polarization is grown up by ~2000 times NMR After aging HD for 3 months HH We carried out the 6th aging of HD in the beginning of 2015 33

34 NMR coil was not cooled sufficiently ? Temperature sensor Mixing chamber Cold finger Dilution refrigerator Support frame of NMR coil Target cell 34

35 Relaxation time of H polarization in the SPring-8 experimental condition Polarization degree (%) Time (day) Aging HD 1 2 3 4 5 6 Year 2008 2011 2012 2013 2014 2015 T H (days) 100 -- 70 60 --- 239+-66 T=0.3 K B=0.9 Tesla T H =239 +-66 days In 2015 35

36 Development of LEPS2 beam line 36

37 SPring-8 beamline map LEPS2 37 LEPS

38 Recoil electron (tagging) LEP (GeV  -ray) Laser room Inside SR bldg 30m long line 8 GeV electron Laser Outside SR bldg Experimental bldg Beam dump BGOegg LEPS2 spectrometer Storage ring LEPS2 facilityLEPS2 facility 10 times high intensity: Multi-laser injection & Laser beam shaping Best e-beam divergence (12  rad)  Photon beam does not spread out  Construct experimental apparatus outside SR bldg Backward Compton scattering ~135 m Large acceptance experimental bldg BGOegg EM calorimeter Large LEPS2 spectrometer using BNL/E949 magnet  expect better resolutions 38

39 LEPS2 experiment hutch was constructed in 2011 August 20112010 LEPS2 experiment hutch Experiment hall of SPring-8 39

40 BNL-E949 spectrometer was transported to SPring-8 SPring-8 LEPS2 experiment hutch 40

41 LEPS2 solenoid spectrometer system 2.22 m  TPC DC  counter RPC TOP Magnet (BNL-E949) B=1 T Magnet (BNL-E949) B=1 T 41 ☆ Acceptance 5 – 120° (charged particle) 40 – 110° (photon) ☆ Momentum measurement - sideway (30– 120°) TPC Δp/p ~ 0.04 (1 GeV/c) - forward (5 – 40°) DC Δp/p ~ 0.01 (1 GeV/c) ☆ Particle Identification 3σ separation up to 2.7 GeV/c - sideway (50 – 120°) RPC (TOF) - middle (30 – 50°) AC, RPC - forward (5 – 30°) TOP, RPC(<11°)

42 Present experiment at LEPS2 using BGOegg by mainly Tohoku University 42

43 Summary We have been carrying out photoproduction experiments at E  =1.5-2.4 GeV at the LEPS facility since 2000. We newly took high momentum  data at E  =1.5-3.0 GeV in 2007. Precise comparison between ūu and d̄d productions is possible in      and      reactions  Preliminary cross section ratio  (  +  0 )/  (  -  ++ ) is found to be larger than 1/3 expected from the I=1 exchange in the t-channel. Preliminary photon beam asymmetry is typically found to be negative for     and positive for      reaction. We are developing a polarized HD target and a large acceptance LEPS2 spectrometer for near future experiments measuring complete set of physics observables. 43

44 LEPS/LEPS2 collaboration RCNP, Osaka University, Ibaraki, Osaka 567-0047, Japan Research Center for Electron Photon Science, Tohoku University, Sendai, Miyagi 982-0826, Japan Kyoto University, Kyoto 606-8502, Japan Pusan National University, Busan 609-735, Republic of Korea Konan University, Kobe, Hyogo 658-8501, Japan XFEL Project Head Office, RIKEN 1-1, Koto, Sayo, Hyogo 679-5148, Japan Academia Sinica, Taipei 11529, Taiwan Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5143, Japan Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215, Japan Nagoya University, Nagoya, Aichi 464-8602, Japan Ohio University, Athens, OH 45701, USA Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195, Japan Yamagata University, Yamagata 990-8560, Japan Chiba University, Chiba 263-8522, Japan Wakayama Medical College, Wakayama, Wakayama 641-8509, Japan Miyazaki University, Miyazaki 889-2192, Japan National Defense Academy in Japan, Yokosuka, Kanagawa 239-8686, Japan Tokyo Institute of Technology, Tokyo 152-8551, Japan University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada University of Minnesota, Minneapolis, MN 55455, USA Gifu University, Gifu 501-1193, Japan Michigan State University, East Lansing, MI 48824, USA University of Connecticut, Storrs, CT 06269-3046, USA Joint Institute for Nuclear Research, RU-141980 Dubna, Russia National Chung Cheng University, Taiwan 44

45 Thank you 45

46 Photon beam asymmetry  46 t (GeV 2 /c 2 )Estimated impact parameter (fm)  0.7<cos   <1 E  =1.5-3.0 GeV       Preliminary

47  (  +  0 )/  (  -  ++ ) and  47 Estimated impact parameter (fm)   (  +  0 )/  (  -  ++ ) E  =1.5-3.0 GeV 0.7<cos   <1      Preliminary

48 SU(2) flavor symmetry breaking Drell-Yan experiment d / u d - u NA51 A. Baldit et al., Phys. Lett. B 332 (1994) 244 HERMES K. Ackerstaff et al., Phys. Rev. Lett. E866 E.A. Hawker et al., Phys. Rev. Lett. 80 (1998) 3715 81 (1998) 5519 E866 J.C. Peng et al., Phys. Rev. D 58 (1998) 092004 E866 R.S. Towell et al., Phys. Rev. D 64 (2001) 052002 48


Download ppt "Comparison between ūu and d̄d productions by the γp→ π - Δ ++ and π + Δ 0 reactions at forward π angles at E γ =1.5-3.0 GeV Oct/5/2015 RCNP, Osaka University."

Similar presentations


Ads by Google