Download presentation
Presentation is loading. Please wait.
Published byBennett Stafford Modified over 8 years ago
1
Linked Lists: Locking, Lock-Free, and Beyond … Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit
2
Art of Multiprocessor Programming2 Last Lecture: Spin-Locks CS Resets lock upon exit spin lock critical section...
3
Art of Multiprocessor Programming3 Today: Concurrent Objects Adding threads should not lower throughput –Contention effects –Mostly fixed by Queue locks
4
Art of Multiprocessor Programming4 Today: Concurrent Objects Adding threads should not lower throughput –Contention effects –Mostly fixed by Queue locks Should increase throughput –Not possible if inherently sequential –Surprising things are parallelizable
5
Art of Multiprocessor Programming5 Coarse-Grained Synchronization Each method locks the object –Avoid contention using queue locks
6
Art of Multiprocessor Programming6 Coarse-Grained Synchronization Each method locks the object –Avoid contention using queue locks –Easy to reason about In simple cases
7
Art of Multiprocessor Programming7 Coarse-Grained Synchronization Each method locks the object –Avoid contention using queue locks –Easy to reason about In simple cases So, are we done?
8
Art of Multiprocessor Programming8 Coarse-Grained Synchronization Sequential bottleneck –Threads “stand in line”
9
Art of Multiprocessor Programming9 Coarse-Grained Synchronization Sequential bottleneck –Threads “stand in line” Adding more threads –Does not improve throughput –Struggle to keep it from getting worse
10
Art of Multiprocessor Programming10 Coarse-Grained Synchronization Sequential bottleneck –Threads “stand in line” Adding more threads –Does not improve throughput –Struggle to keep it from getting worse So why even use a multiprocessor? –Well, some apps inherently parallel …
11
Art of Multiprocessor Programming11 This Lecture Introduce four “patterns” –Bag of tricks … –Methods that work more than once …
12
Art of Multiprocessor Programming12 This Lecture Introduce four “patterns” –Bag of tricks … –Methods that work more than once … For highly-concurrent objects –Concurrent access –More threads, more throughput
13
Art of Multiprocessor Programming13 First: Fine-Grained Synchronization Instead of using a single lock …
14
Art of Multiprocessor Programming14 First: Fine-Grained Synchronization Instead of using a single lock … Split object into –Independently-synchronized components
15
Art of Multiprocessor Programming15 First: Fine-Grained Synchronization Instead of using a single lock … Split object into –Independently-synchronized components Methods conflict when they access –The same component … –At the same time
16
Art of Multiprocessor Programming16 Second: Optimistic Synchronization Search without locking …
17
Art of Multiprocessor Programming17 Second: Optimistic Synchronization Search without locking … If you find it, lock and check … –OK: we are done –Oops: start over
18
Art of Multiprocessor Programming18 Second: Optimistic Synchronization Search without locking … If you find it, lock and check … –OK: we are done –Oops: start over Evaluation –Usually cheaper than locking, but –Mistakes are expensive
19
Art of Multiprocessor Programming19 Third: Lazy Synchronization Postpone hard work
20
Art of Multiprocessor Programming20 Third: Lazy Synchronization Postpone hard work Removing components is tricky
21
Art of Multiprocessor Programming21 Third: Lazy Synchronization Postpone hard work Removing components is tricky –Logical removal Mark component to be deleted
22
Art of Multiprocessor Programming22 Third: Lazy Synchronization Postpone hard work Removing components is tricky –Logical removal Mark component to be deleted –Physical removal Do what needs to be done
23
Art of Multiprocessor Programming23 Fourth: Lock-Free Synchronization Don’t use locks at all –Use compareAndSet() & relatives …
24
Art of Multiprocessor Programming24 Fourth: Lock-Free Synchronization Don’t use locks at all –Use compareAndSet() & relatives … Advantages –No Scheduler Assumptions/Support
25
Art of Multiprocessor Programming25 Fourth: Lock-Free Synchronization Don’t use locks at all –Use compareAndSet() & relatives … Advantages –No Scheduler Assumptions/Support Disadvantages –Complex –Sometimes high overhead
26
Art of Multiprocessor Programming26 Linked List Illustrate these patterns … Using a list-based Set –Common application –Building block for other apps
27
Art of Multiprocessor Programming27 Set Interface Unordered collection of items
28
Art of Multiprocessor Programming28 Set Interface Unordered collection of items No duplicates
29
Art of Multiprocessor Programming29 Set Interface Unordered collection of items No duplicates Methods –add(x) put x in set –remove(x) take x out of set –contains(x) tests if x in set
30
Art of Multiprocessor Programming30 List-Based Sets public interface Set { public boolean add(T x); public boolean remove(T x); public boolean contains(T x); }
31
Art of Multiprocessor Programming31 List-Based Sets public interface Set { public boolean add(T x); public boolean remove(T x); public boolean contains(T x); } Add item to set
32
Art of Multiprocessor Programming32 List-Based Sets public interface Set { public boolean add(T x); public boolean remove(T x); public boolean contains(Tt x); } Remove item from set
33
Art of Multiprocessor Programming33 List-Based Sets public interface Set { public boolean add(T x); public boolean remove(T x); public boolean contains(T x); } Is item in set?
34
Art of Multiprocessor Programming34 List Node public class Node { public T item; public int key; public volatile Node next; }
35
Art of Multiprocessor Programming35 List Node public class Node { public T item; public int key; public volatile Node next; } item of interest
36
Art of Multiprocessor Programming36 List Node public class Node { public T item; public int key; public volatile Node next; } Usually hash code
37
Art of Multiprocessor Programming37 List Node public class Node { public T item; public int key; public volatile Node next; } Reference to next node
38
Art of Multiprocessor Programming38 The List-Based Set abc Sorted with Sentinel nodes (min & max possible keys) -∞ +∞
39
Art of Multiprocessor Programming39 Reasoning about Concurrent Objects Invariant –Property that always holds
40
Art of Multiprocessor Programming40 Reasoning about Concurrent Objects Invariant –Property that always holds Established because –True when object is created –Truth preserved by each method Each step of each method
41
Art of Multiprocessor Programming41 Specifically … Invariants preserved by –add() –remove() –contains()
42
Art of Multiprocessor Programming42 Specifically … Invariants preserved by –add() –remove() –contains() Most steps are trivial –Usually one step tricky –Often linearization point
43
Art of Multiprocessor Programming43 Interference Invariants make sense only if –methods considered –are the only modifiers
44
Art of Multiprocessor Programming44 Interference Invariants make sense only if –methods considered –are the only modifiers Language encapsulation helps –List nodes not visible outside class
45
Art of Multiprocessor Programming45 Interference Invariants make sense only if –methods considered –are the only modifiers Language encapsulation helps –List nodes not visible outside class
46
Art of Multiprocessor Programming46 Interference Freedom from interference needed even for removed nodes –Some algorithms traverse removed nodes –Careful with malloc() & free() ! We rely on garbage collection
47
Art of Multiprocessor Programming47 Abstract Data Types Concrete representation: Abstract Type: {a, b} ab
48
Art of Multiprocessor Programming48 Abstract Data Types Meaning of rep given by abstraction map S( ) = {a,b} a b
49
Art of Multiprocessor Programming49 Rep Invariant Which concrete values meaningful? –Sorted? –Duplicates? Rep invariant –Characterizes legal concrete reps –Preserved by methods –Relied on by methods
50
Art of Multiprocessor Programming50 Blame Game Rep invariant is a contract Suppose –add() leaves behind 2 copies of x –remove() removes only 1 Which is incorrect?
51
Art of Multiprocessor Programming51 Blame Game Suppose –add() leaves behind 2 copies of x –remove() removes only 1
52
Art of Multiprocessor Programming52 Blame Game Suppose –add() leaves behind 2 copies of x –remove() removes only 1 Which is incorrect? –If rep invariant says no duplicates add() is incorrect –Otherwise remove() is incorrect
53
Art of Multiprocessor Programming53 Rep Invariant (partly) Sentinel nodes –tail reachable from head Sorted No duplicates
54
Art of Multiprocessor Programming54 Abstraction Map S(head) = { x | there exists a such that a reachable from head and a.item = x }
55
Art of Multiprocessor Programming55 Sequential List Based Set a c d a b c add() remove()
56
Art of Multiprocessor Programming56 Sequential List Based Set a c d b a b c add() r emove()
57
Art of Multiprocessor Programming57 Coarse-Grained Locking a b d
58
Art of Multiprocessor Programming58 Coarse-Grained Locking a b d c
59
Art of Multiprocessor Programming59 honk! Coarse-Grained Locking a b d c Simple but hotspot + bottleneck honk!
60
Art of Multiprocessor Programming60 Coarse-Grained Locking Easy, same as synchronized methods –“One lock to rule them all …”
61
Art of Multiprocessor Programming61 Coarse-Grained Locking Easy, same as synchronized methods –“One lock to rule them all …” Simple, clearly correct –Deserves respect! Works poorly with contention –Queue locks help –But bottleneck still an issue
62
Art of Multiprocessor Programming62 Fine-grained Locking Requires careful thought –“Do not meddle in the affairs of wizards, for they are subtle and quick to anger”
63
Art of Multiprocessor Programming63 Fine-grained Locking Requires careful thought –“Do not meddle in the affairs of wizards, for they are subtle and quick to anger” Split object into pieces –Each piece has own lock –Methods that work on disjoint pieces need not exclude each other
64
Art of Multiprocessor Programming64 Hand-over-Hand locking abc
65
Art of Multiprocessor Programming65 Hand-over-Hand locking abc
66
Art of Multiprocessor Programming66 Hand-over-Hand locking abc
67
Art of Multiprocessor Programming67 Hand-over-Hand locking abc
68
Art of Multiprocessor Programming68 Hand-over-Hand locking abc
69
Art of Multiprocessor Programming69 Removing a Node abcd remove(b)
70
Art of Multiprocessor Programming70 Removing a Node abcd remove(b)
71
Art of Multiprocessor Programming71 Removing a Node abcd remove(b)
72
Art of Multiprocessor Programming72 Removing a Node abcd remove(b)
73
Art of Multiprocessor Programming73 Removing a Node abcd remove(b)
74
Art of Multiprocessor Programming74 Removing a Node acd remove(b) Why lock victim node?
75
Art of Multiprocessor Programming75 Concurrent Removes abcd remove(c) remove(b)
76
Art of Multiprocessor Programming76 Concurrent Removes abcd remove(b) remove(c)
77
Art of Multiprocessor Programming77 Concurrent Removes abcd remove(b) remove(c)
78
Art of Multiprocessor Programming78 Concurrent Removes abcd remove(b) remove(c)
79
Art of Multiprocessor Programming79 Concurrent Removes abcd remove(b) remove(c)
80
Art of Multiprocessor Programming80 Concurrent Removes abcd remove(b) remove(c)
81
Art of Multiprocessor Programming81 Concurrent Removes abcd remove(b) remove(c)
82
Art of Multiprocessor Programming82 Concurrent Removes abcd remove(b) remove(c)
83
Art of Multiprocessor Programming83 Concurrent Removes abcd remove(b) remove(c)
84
Art of Multiprocessor Programming84 Concurrent Removes abcd remove(b) remove(c)
85
Art of Multiprocessor Programming85 Uh, Oh acd remove(b) remove(c)
86
Art of Multiprocessor Programming86 Uh, Oh acd Bad news, c not removed remove(b) remove(c)
87
Art of Multiprocessor Programming87 Problem To delete node c –Swing node b’s next field to d Problem is, –Someone deleting b concurrently could direct a pointer to c ba cbac
88
Art of Multiprocessor Programming88 Insight If a node is locked –No one can delete node’s successor If a thread locks –Node to be deleted –And its predecessor –Then it works
89
Art of Multiprocessor Programming89 Hand-Over-Hand Again abcd remove(b)
90
Art of Multiprocessor Programming90 Hand-Over-Hand Again abcd remove(b)
91
Art of Multiprocessor Programming91 Hand-Over-Hand Again abcd remove(b)
92
Art of Multiprocessor Programming92 Hand-Over-Hand Again abcd remove(b) Found it!
93
Art of Multiprocessor Programming93 Hand-Over-Hand Again abcd remove(b) Found it!
94
Art of Multiprocessor Programming94 Hand-Over-Hand Again acd remove(b)
95
Art of Multiprocessor Programming95 Removing a Node abcd remove(b) remove(c)
96
Art of Multiprocessor Programming96 Removing a Node abcd remove(b) remove(c)
97
Art of Multiprocessor Programming97 Removing a Node abcd remove(b) remove(c)
98
Art of Multiprocessor Programming98 Removing a Node abcd remove(b) remove(c)
99
Art of Multiprocessor Programming99 Removing a Node abcd remove(b) remove(c)
100
Art of Multiprocessor Programming100 Removing a Node abcd remove(b) remove(c)
101
Art of Multiprocessor Programming101 Removing a Node abcd remove(b) remove(c)
102
Art of Multiprocessor Programming102 Removing a Node abcd remove(b) remove(c)
103
Art of Multiprocessor Programming103 Removing a Node abcd Must acquire Lock for b remove(c)
104
Art of Multiprocessor Programming104 Removing a Node abcd Waiting to acquire lock for b remove(c)
105
Art of Multiprocessor Programming105 Removing a Node abcd Wait! remove(c)
106
Art of Multiprocessor Programming106 Removing a Node abd Proceed to remove(b)
107
Art of Multiprocessor Programming107 Removing a Node abd remove(b)
108
Art of Multiprocessor Programming108 Removing a Node abd remove(b)
109
Art of Multiprocessor Programming109 Removing a Node ad remove(b)
110
Art of Multiprocessor Programming110 Removing a Node ad
111
Art of Multiprocessor Programming111 Remove method public boolean remove(T item) { int key = item.hashCode(); Node pred, curr; try { … } finally { curr.unlock(); pred.unlock(); }}
112
Art of Multiprocessor Programming112 Remove method public boolean remove(T item) { int key = item.hashCode(); Node pred, curr; try { … } finally { curr.unlock(); pred.unlock(); }} Key used to order node
113
Art of Multiprocessor Programming113 Remove method public boolean remove(T item) { int key = item.hashCode(); Node pred, curr; try { … } finally { currNode.unlock(); predNode.unlock(); }} Predecessor and current nodes
114
Art of Multiprocessor Programming114 Remove method public boolean remove(T item) { int key = item.hashCode(); Node pred, curr; try { … } finally { curr.unlock(); pred.unlock(); }} Make sure locks released
115
Art of Multiprocessor Programming115 Remove method public boolean remove(T item) { int key = item.hashCode(); Node pred, curr; try { … } finally { curr.unlock(); pred.unlock(); }} Everything else
116
Art of Multiprocessor Programming116 Remove method try { pred = head; pred.lock(); curr = pred.next; curr.lock(); … } finally { … }
117
Art of Multiprocessor Programming117 Remove method try { pred = head; pred.lock(); curr = pred.next; curr.lock(); … } finally { … } lock pred == head
118
try { pred = head; pred.lock(); curr = pred.next; curr.lock(); … } finally { … } Art of Multiprocessor Programming118 Remove method Lock current
119
try { pred = head; pred.lock(); curr = pred.next; curr.lock(); … } finally { … } Art of Multiprocessor Programming119 Remove method Traversing list
120
while (curr.key <= key) { if (item == curr.item) { pred.next = curr.next; return true; } pred.unlock(); pred = curr; curr = curr.next; curr.lock(); } return false; Art of Multiprocessor Programming120 Remove: searching
121
while (curr.key <= key) { if (item == curr.item) { pred.next = curr.next; return true; } pred.unlock(); pred = curr; curr = curr.next; curr.lock(); } return false; Art of Multiprocessor Programming121 Remove: searching Search key range
122
while (curr.key <= key) { if (item == curr.item) { pred.next = curr.next; return true; } pred.unlock(); pred = curr; curr = curr.next; curr.lock(); } return false; At start of each loop: curr and pred locked Art of Multiprocessor Programming122 Remove: searching
123
while (curr.key <= key) { if (item == curr.item) { pred.next = curr.next; return true; } pred.unlock(); pred = curr; curr = curr.next; curr.lock(); } return false; Art of Multiprocessor Programming123 Remove: searching If item found, remove node
124
while (curr.key <= key) { if (item == curr.item) { pred.next = curr.next; return true; } pred.unlock(); pred = curr; curr = curr.next; curr.lock(); } return false; Art of Multiprocessor Programming124 Remove: searching If node found, remove it
125
while (curr.key <= key) { if (item == curr.item) { pred.next = curr.next; return true; } pred.unlock(); pred = curr; curr = curr.next; curr.lock(); } return false; Art of Multiprocessor Programming125 Remove: searching Unlock predecessor
126
while (curr.key <= key) { if (item == curr.item) { pred.next = curr.next; return true; } pred.unlock(); pred = curr; curr = curr.next; curr.lock(); } return false; Art of Multiprocessor Programming126 Remove: searching Only one node locked!
127
while (curr.key <= key) { if (item == curr.item) { pred.next = curr.next; return true; } pred.unlock(); pred = curr; curr = curr.next; curr.lock(); } return false; Art of Multiprocessor Programming127 Remove: searching demote current
128
while (curr.key <= key) { if (item == curr.item) { pred.next = curr.next; return true; } pred.unlock(); pred = currNode; curr = curr.next; curr.lock(); } return false; Art of Multiprocessor Programming128 Remove: searching Find and lock new current
129
while (curr.key <= key) { if (item == curr.item) { pred.next = curr.next; return true; } pred.unlock(); pred = currNode; curr = curr.next; curr.lock(); } return false; Art of Multiprocessor Programming129 Remove: searching Lock invariant restored
130
Art of Multiprocessor Programming130 Remove: searching while (curr.key <= key) { if (item == curr.item) { pred.next = curr.next; return true; } pred.unlock(); pred = curr; curr = curr.next; curr.lock(); } return false; Otherwise, not present
131
Art of Multiprocessor Programming131 Why does this work? To remove node e –Must lock e –Must lock e’s predecessor Therefore, if you lock a node –It can’t be removed –And neither can its successor
132
Art of Multiprocessor Programming132 while (curr.key <= key) { if (item == curr.item) { pred.next = curr.next; return true; } pred.unlock(); pred = curr; curr = curr.next; curr.lock(); } return false; Why remove() is linearizable pred reachable from head curr is pred.next So curr.item is in the set
133
Art of Multiprocessor Programming133 while (curr.key <= key) { if (item == curr.item) { pred.next = curr.next; return true; } pred.unlock(); pred = curr; curr = curr.next; curr.lock(); } return false; Why remove() is linearizable Linearization point if item is present
134
Art of Multiprocessor Programming134 while (curr.key <= key) { if (item == curr.item) { pred.next = curr.next; return true; } pred.unlock(); pred = curr; curr = curr.next; curr.lock(); } return false; Why remove() is linearizable Node locked, so no other thread can remove it ….
135
Art of Multiprocessor Programming135 while (curr.key <= key) { if (item == curr.item) { pred.next = curr.next; return true; } pred.unlock(); pred = curr; curr = curr.next; curr.lock(); } return false; Why remove() is linearizable Item not present
136
Art of Multiprocessor Programming136 while (curr.key <= key) { if (item == curr.item) { pred.next = curr.next; return true; } pred.unlock(); pred = curr; curr = curr.next; curr.lock(); } return false; Why remove() is linearizable pred reachable from head curr is pred.next pred.key < key key < curr.key
137
Art of Multiprocessor Programming137 while (curr.key <= key) { if (item == curr.item) { pred.next = curr.next; return true; } pred.unlock(); pred = curr; curr = curr.next; curr.lock(); } return false; Why remove() is linearizable Linearization point
138
Art of Multiprocessor Programming138 Adding Nodes To add node e –Must lock predecessor –Must lock successor Neither can be deleted –(Is successor lock actually required?)
139
Art of Multiprocessor Programming139 Same Abstraction Map S(head) = { x | there exists a such that a reachable from head and a.item = x }
140
Art of Multiprocessor Programming140 Rep Invariant Easy to check that –tail always reachable from head –Nodes sorted, no duplicates
141
Art of Multiprocessor Programming141 Drawbacks Better than coarse-grained lock –Threads can traverse in parallel Still not ideal –Long chain of acquire/release –Inefficient
142
Art of Multiprocessor Programming142 Optimistic Synchronization Find nodes without locking Lock nodes Check that everything is OK
143
Art of Multiprocessor Programming143 Optimistic: Traverse without Locking b d e a add(c) Aha!
144
Art of Multiprocessor Programming144 Optimistic: Lock and Load b d e a add(c)
145
Art of Multiprocessor Programming145 Optimistic: Lock and Load b d e a add(c) c
146
Art of Multiprocessor Programming146 What could go wrong? b d e a add(c) Aha!
147
Art of Multiprocessor Programming147 What could go wrong? b d e a add(c)
148
Art of Multiprocessor Programming148 What could go wrong? b d e a remove(b)
149
Art of Multiprocessor Programming149 What could go wrong? b d e a remove(b)
150
Art of Multiprocessor Programming150 What could go wrong? b d e a add(c)
151
Art of Multiprocessor Programming151 What could go wrong? b d e a add(c) c
152
Art of Multiprocessor Programming152 What could go wrong? d e a add(c) Uh-oh
153
Art of Multiprocessor Programming153 Validate – Part 1 b d e a add(c) Yes, b still reachable from head
154
Art of Multiprocessor Programming154 What Else Could Go Wrong? b d e a add(c) Aha!
155
Art of Multiprocessor Programming155 What Else Coould Go Wrong? b d e a add(c) add(b’)
156
Art of Multiprocessor Programming156 What Else Coould Go Wrong? b d e a add(c) add(b’) b’
157
Art of Multiprocessor Programming157 What Else Could Go Wrong? b d e a add(c) b’
158
Art of Multiprocessor Programming158 What Else Could Go Wrong? b d e a add(c) c
159
Art of Multiprocessor Programming159 Validate Part 2 (while holding locks) b d e a add(c) Yes, b still points to d
160
Art of Multiprocessor Programming160 Optimistic: Linearization Point b d e a add(c) c
161
Art of Multiprocessor Programming161 Same Abstraction Map S(head) = { x | there exists a such that a reachable from head and a.item = x }
162
Art of Multiprocessor Programming162 Invariants Careful: we may traverse deleted nodes But we establish properties by –Validation –After we lock target nodes
163
Art of Multiprocessor Programming163 Correctness If –Nodes b and c both locked –Node b still accessible –Node c still successor to b Then –Neither will be deleted –OK to delete and return true
164
Art of Multiprocessor Programming164 Unsuccessful Remove abde remove(c) Aha!
165
Art of Multiprocessor Programming165 Validate (1) abde Yes, b still reachable from head remove(c)
166
Art of Multiprocessor Programming166 Validate (2) abde remove(c) Yes, b still points to d
167
Art of Multiprocessor Programming167 OK Computer abde remove(c) return false
168
Art of Multiprocessor Programming168 Correctness If –Nodes b and d both locked –Node b still accessible –Node d still successor to b Then –Neither will be deleted –No thread can add c after b –OK to return false
169
Art of Multiprocessor Programming169 Validation private boolean validate(Node pred, Node curry) { Node node = head; while (node.key <= pred.key) { if (node == pred) return pred.next == curr; node = node.next; } return false; }
170
private boolean validate(Node pred, Node curr) { Node node = head; while (node.key <= pred.key) { if (node == pred) return pred.next == curr; node = node.next; } return false; } Art of Multiprocessor Programming170 Validation Predecessor & current nodes
171
private boolean validate(Node pred, Node curr) { Node node = head; while (node.key <= pred.key) { if (node == pred) return pred.next == curr; node = node.next; } return false; } Art of Multiprocessor Programming171 Validation Begin at the beginning
172
private boolean validate(Node pred, Node curr) { Node node = head; while (node.key <= pred.key) { if (node == pred) return pred.next == curr; node = node.next; } return false; } Art of Multiprocessor Programming172 Validation Search range of keys
173
private boolean validate(Node pred, Node curr) { Node node = head; while (node.key <= pred.key) { if (node == pred) return pred.next == curr; node = node.next; } return false; } Art of Multiprocessor Programming173 Validation Predecessor reachable
174
Art of Multiprocessor Programming174 private boolean validate(Node pred, Node curr) { Node node = head; while (node.key <= pred.key) { if (node == pred) return pred.next == curr; node = node.next; } return false; } Validation Is current node next?
175
Art of Multiprocessor Programming175 private boolean validate(Node pred, Node curr) { Node node = head; while (node.key <= pred.key) { if (node == pred) return pred.next == curr; node = node.next; } return false; } Validation Otherwise move on
176
Art of Multiprocessor Programming176 private boolean validate(Node pred, Node curr) { Node node = head; while (node.key <= pred.key) { if (node == pred) return pred.next == curr; node = node.next; } return false; } Validation Predecessor not reachable
177
Art of Multiprocessor Programming177 Remove: searching public boolean remove(T item) { int key = item.hashCode(); retry: while (true) { Node pred = head; Node curr = pred.next; while (curr.key <= key) { if (item == curr.item) break; pred = curr; curr = curr.next; } …
178
Art of Multiprocessor Programming178 public boolean remove(T item) { int key = item.hashCode(); retry: while (true) { Node pred = head; Node curr = pred.next; while (curr.key <= key) { if (item == curr.item) break; pred = curr; curr = curr.next; } … Remove: searching Search key
179
Art of Multiprocessor Programming179 public boolean remove(T item) { int key = item.hashCode(); retry: while (true) { Node pred = head; Node curr = pred.next; while (curr.key <= key) { if (item == curr.item) break; pred = curr; curr = curr.next; } … Remove: searching Retry on synchronization conflict
180
Art of Multiprocessor Programming180 public boolean remove(T item) { int key = item.hashCode(); retry: while (true) { Node pred = head; Node curr = pred.next; while (curr.key <= key) { if (item == curr.item) break; pred = curr; curr = curr.next; } … Remove: searching Examine predecessor and current nodes
181
Art of Multiprocessor Programming181 public boolean remove(T item) { int key = item.hashCode(); retry: while (true) { Node pred = head; Node curr = pred.next; while (curr.key <= key) { if (item == curr.item) break; pred = curr; curr = curr.next; } … Remove: searching Search by key
182
Art of Multiprocessor Programming182 public boolean remove(T item) { int key = item.hashCode(); retry: while (true) { Node pred = head; Node curr = pred.next; while (curr.key <= key) { if (item == curr.item) break; pred = curr; curr = curr.next; } … Remove: searching Stop if we find item
183
Art of Multiprocessor Programming183 public boolean remove(T item) { int key = item.hashCode(); retry: while (true) { Node pred = head; Node curr = pred.next; while (curr.key <= key) { if (item == curr.item) break; pred = curr; curr = curr.next; } … Remove: searching Move along
184
Art of Multiprocessor Programming184 On Exit from Loop If item is present –curr holds item –pred just before curr If item is absent –curr has first higher key –pred just before curr Assuming no synchronization problems
185
Art of Multiprocessor Programming185 Remove Method try { pred.lock(); curr.lock(); if (validate(pred,curr) { if (curr.item == item) { pred.next = curr.next; return true; } else { return false; }}} finally { pred.unlock(); curr.unlock(); }}}
186
Art of Multiprocessor Programming186 try { pred.lock(); curr.lock(); if (validate(pred,curr) { if (curr.item == item) { pred.next = curr.next; return true; } else { return false; }}} finally { pred.unlock(); curr.unlock(); }}} Remove Method Always unlock
187
Art of Multiprocessor Programming187 try { pred.lock(); curr.lock(); if (validate(pred,curr) { if (curr.item == item) { pred.next = curr.next; return true; } else { return false; }}} finally { pred.unlock(); curr.unlock(); }}} Remove Method Lock both nodes
188
Art of Multiprocessor Programming188 try { pred.lock(); curr.lock(); if (validate(pred,curr) { if (curr.item == item) { pred.next = curr.next; return true; } else { return false; }}} finally { pred.unlock(); curr.unlock(); }}} Remove Method Check for synchronization conflicts
189
Art of Multiprocessor Programming189 try { pred.lock(); curr.lock(); if (validate(pred,curr) { if (curr.item == item) { pred.next = curr.next; return true; } else { return false; }}} finally { pred.unlock(); curr.unlock(); }}} Remove Method target found, remove node
190
Art of Multiprocessor Programming190 try { pred.lock(); curr.lock(); if (validate(pred,curr) { if (curr.item == item) { pred.next = curr.next; return true; } else { return false; }}} finally { pred.unlock(); curr.unlock(); }}} Remove Method target not found
191
Art of Multiprocessor Programming191 Optimistic List Limited hot-spots –Targets of add(), remove(), contains() –No contention on traversals Moreover –Traversals are wait-free –Food for thought …
192
Art of Multiprocessor Programming192 So Far, So Good Much less lock acquisition/release –Performance –Concurrency Problems –Need to traverse list twice –contains() method acquires locks
193
Art of Multiprocessor Programming193 Evaluation Optimistic is effective if –cost of scanning twice without locks is less than –cost of scanning once with locks Drawback –contains() acquires locks –90% of calls in many apps
194
Art of Multiprocessor Programming194 Lazy List Like optimistic, except –Scan once –contains(x) never locks … Key insight –Removing nodes causes trouble –Do it “lazily”
195
Art of Multiprocessor Programming195 Lazy List remove() –Scans list (as before) –Locks predecessor & current (as before) Logical delete –Marks current node as removed (new!) Physical delete –Redirects predecessor’s next (as before)
196
Art of Multiprocessor Programming196 Lazy Removal aa b c d
197
c Art of Multiprocessor Programming197 Lazy Removal aa b d Present in list
198
c Art of Multiprocessor Programming198 Lazy Removal aa b d Logically deleted
199
Art of Multiprocessor Programming199 Lazy Removal aa b c d Physically deleted
200
Art of Multiprocessor Programming200 Lazy Removal aa b d Physically deleted
201
Art of Multiprocessor Programming201 Lazy List All Methods –Scan through locked and marked nodes –Removing a node doesn’t slow down other method calls … Must still lock pred and curr nodes.
202
Art of Multiprocessor Programming202 Validation No need to rescan list! Check that pred is not marked Check that curr is not marked Check that pred points to curr
203
Art of Multiprocessor Programming203 Business as Usual abc
204
Art of Multiprocessor Programming204 Business as Usual abc
205
Art of Multiprocessor Programming205 Business as Usual abc
206
Art of Multiprocessor Programming206 Business as Usual abc remove(b)
207
Art of Multiprocessor Programming207 Business as Usual abc a not marked
208
Art of Multiprocessor Programming208 Business as Usual abc a still points to b
209
Art of Multiprocessor Programming209 Business as Usual a bc Logical delete
210
Art of Multiprocessor Programming210 Business as Usual a bc physical delete
211
Art of Multiprocessor Programming211 Business as Usual a bc
212
Art of Multiprocessor Programming212 New Abstraction Map S(head) = { x | there exists node a such that a reachable from head and a.item = x and a is unmarked }
213
Art of Multiprocessor Programming213 Invariant If not marked then item in the set and reachable from head and if not yet traversed it is reachable from pred
214
Art of Multiprocessor Programming214 Validation private boolean validate(Node pred, Node curr) { return !pred.marked && !curr.marked && pred.next == curr); }
215
Art of Multiprocessor Programming215 private boolean validate(Node pred, Node curr) { return !pred.marked && !curr.marked && pred.next == curr); } List Validate Method Predecessor not Logically removed
216
Art of Multiprocessor Programming216 private boolean validate(Node pred, Node curr) { return !pred.marked && !curr.marked && pred.next == curr); } List Validate Method Current not Logically removed
217
Art of Multiprocessor Programming217 private boolean validate(Node pred, Node curr) { return !pred.marked && !curr.marked && pred.next == curr); } List Validate Method Predecessor still Points to current
218
Art of Multiprocessor Programming218 Remove try { pred.lock(); curr.lock(); if (validate(pred,curr) { if (curr.key == key) { curr.marked = true; pred.next = curr.next; return true; } else { return false; }}} finally { pred.unlock(); curr.unlock(); }}}
219
Art of Multiprocessor Programming219 Remove try { pred.lock(); curr.lock(); if (validate(pred,curr) { if (curr.key == key) { curr.marked = true; pred.next = curr.next; return true; } else { return false; }}} finally { pred.unlock(); curr.unlock(); }}} Validate as before
220
Art of Multiprocessor Programming220 Remove try { pred.lock(); curr.lock(); if (validate(pred,curr) { if (curr.key == key) { curr.marked = true; pred.next = curr.next; return true; } else { return false; }}} finally { pred.unlock(); curr.unlock(); }}} Key found
221
Art of Multiprocessor Programming221 Remove try { pred.lock(); curr.lock(); if (validate(pred,curr) { if (curr.key == key) { curr.marked = true; pred.next = curr.next; return true; } else { return false; }}} finally { pred.unlock(); curr.unlock(); }}} Logical remove
222
Art of Multiprocessor Programming222 Remove try { pred.lock(); curr.lock(); if (validate(pred,curr) { if (curr.key == key) { curr.marked = true; pred.next = curr.next; return true; } else { return false; }}} finally { pred.unlock(); curr.unlock(); }}} physical remove
223
Art of Multiprocessor Programming223 Contains public boolean contains(T item) { int key = item.hashCode(); Node curr = head; while (curr.key < key) { curr = curr.next; } return curr.key == key && !curr.marked; }
224
Art of Multiprocessor Programming224 Contains public boolean contains(T item) { int key = item.hashCode(); Node curr = head; while (curr.key < key) { curr = curr.next; } return curr.key == key && !curr.marked; } Start at the head
225
Art of Multiprocessor Programming225 Contains public boolean contains(T item) { int key = item.hashCode(); Node curr = head; while (curr.key < key) { curr = curr.next; } return curr.key == key && !curr.marked; } Search key range
226
Art of Multiprocessor Programming226 Contains public boolean contains(T item) { int key = item.hashCode(); Node curr = head; while (curr.key < key) { curr = curr.next; } return curr.key == key && !curr.marked; } Traverse without locking (nodes may have been removed)
227
Art of Multiprocessor Programming227 Contains public boolean contains(T item) { int key = item.hashCode(); Node curr = head; while (curr.key < key) { curr = curr.next; } return curr.key == key && !curr.marked; } Present and undeleted?
228
Art of Multiprocessor Programming228 Summary: Wait-free Contains a 0 0 a b c e d Use Mark bit + list ordering 1.Not marked in the set 2.Marked or missing not in the set
229
Art of Multiprocessor Programming229 Lazy List a 0 0 0 a b c 0 e 1 d Lazy add() and remove() + Wait-free contains()
230
Art of Multiprocessor Programming230 Evaluation Good: –contains() doesn’t lock –In fact, its wait-free! –Good because typically high % contains() –Uncontended calls don’t re-traverse Bad –Contended add() and remove() calls must re-traverse –Traffic jam if one thread delays
231
Art of Multiprocessor Programming231 Traffic Jam Any concurrent data structure based on mutual exclusion has a weakness If one thread –Enters critical section –And “eats the big muffin” Cache miss, page fault, descheduled … –Everyone else using that lock is stuck! –Need to trust the scheduler….
232
Art of Multiprocessor Programming232 Reminder: Lock-Free Data Structures No matter what … –Guarantees minimal progress in any execution –i.e. Some thread will always complete a method call –Even if others halt at malicious times –Implies that implementation can’t use locks
233
Art of Multiprocessor Programming233 Lock-free Lists Next logical step –Wait-free contains() –lock-free add() and remove() Use only compareAndSet() –What could go wrong?
234
234 public abstract class CASObject { private int value; public boolean synchronized compareAndSet(int expected, int update) { if (value==expected) { value = update; return true; } return false; } … } compareAndSet Art of Multiprocessor Programming
235
235 public abstract class CASObject { private int value; public boolean synchronized compareAndSet(int expected, int update) { if (value==expected) { value = update; return true; } return false; } … } compareAndSet If value is as expected, …
236
Art of Multiprocessor Programming 236 public abstract class CASOBJECT{ private int value; public boolean synchronized compareAndSet(int expected, int update) { if (value==expected) { value = update; return true; } return false; } … } compareAndSet … replace it
237
Art of Multiprocessor Programming 237 public abstract class RMWRegister { private int value; public boolean synchronized compareAndSet(int expected, int update) { if (value==expected) { value = update; return true; } return false; } … } compareAndSet Report success
238
Art of Multiprocessor Programming 238 public abstract class RMWRegister { private int value; public boolean synchronized compareAndSet(int expected, int update) { if (value==expected) { value = update; return true; } return false; } … } compareAndSet Otherwise report failure
239
Art of Multiprocessor Programming239 a 0 0 0 a b c 0 e 1 c Logical Removal Physical Removal Use CAS to verify pointer is correct Not enough! Lock-free Lists
240
Art of Multiprocessor Programming240 Problem… a 0 0 0 a b c 0 e 1 c Logical Removal Physical Removal 0 d Node added
241
Art of Multiprocessor Programming241 The Solution: Combine Bit and Pointer a 0 0 0 a b c 0 e 1 c Logical Removal = Set Mark Bit Physical Removal CAS 0 d Mark-Bit and Pointer are CASed together (AtomicMarkableReference) Fail CAS: Node not added after logical Removal
242
Art of Multiprocessor Programming242 Solution Use AtomicMarkableReference Atomically –Swing reference and –Update flag Remove in two steps –Set mark bit in next field –Redirect predecessor’s pointer
243
Art of Multiprocessor Programming243 Marking a Node AtomicMarkableReference class –Java.util.concurrent.atomic package address F mark bit Reference
244
Art of Multiprocessor Programming244 Extracting Reference & Mark public Object get(boolean[] marked);
245
Art of Multiprocessor Programming245 Extracting Reference & Mark public Object get(boolean[] marked); Returns reference Returns mark at array index 0!
246
Art of Multiprocessor Programming246 Extracting Mark Only public boolean isMarked(); Value of mark
247
Art of Multiprocessor Programming247 Changing State public boolean compareAndSet( Object expectedRef, Object updateRef, boolean expectedMark, boolean updateMark);
248
Art of Multiprocessor Programming248 Changing State public boolean compareAndSet( Object expectedRef, Object updateRef, boolean expectedMark, boolean updateMark); If this is the current reference … And this is the current mark …
249
Art of Multiprocessor Programming249 Changing State public boolean compareAndSet( Object expectedRef, Object updateRef, boolean expectedMark, boolean updateMark); …then change to this new reference … … and this new mark
250
Art of Multiprocessor Programming250 Changing State public boolean attemptMark( Object expectedRef, boolean updateMark);
251
Art of Multiprocessor Programming251 Changing State public boolean attemptMark( Object expectedRef, boolean updateMark); If this is the current reference …
252
Art of Multiprocessor Programming252 Changing State public boolean attemptMark( Object expectedRef, boolean updateMark);.. then change to this new mark.
253
b CAS Art of Multiprocessor Programming253 Removing a Node acd remove(c)
254
Art of Multiprocessor Programming254 Removing a Node abd remove(b) c failed CAS remove(c)
255
Art of Multiprocessor Programming255 Removing a Node abd c remove(b) remove(c)
256
Art of Multiprocessor Programming256 Removing a Node ad remove(b) remove(c)
257
Art of Multiprocessor Programming257 Traversing the List Q: what do you do when you find a “logically” deleted node in your path? A: finish the job. –CAS the predecessor’s next field –Proceed (repeat as needed)
258
Art of Multiprocessor Programming258 Lock-Free Traversal (only Add and Remove) abcd CAS Uh-oh pred curr pred curr
259
Art of Multiprocessor Programming259 The Window Class class Window { public Node pred; public Node curr; Window(Node pred, Node curr) { pred = pred; curr = curr; }
260
Art of Multiprocessor Programming260 The Window Class class Window { public Node pred; public Node curr; Window(Node pred, Node curr) { pred = pred; curr = curr; } A container for pred and current values
261
Art of Multiprocessor Programming261 Using the Find Method Window window = find(head, key); Node pred = window.pred; curr = window.curr;
262
Art of Multiprocessor Programming262 Using the Find Method Window window = find(head, key); Node pred = window.pred; curr = window.curr; Find returns window
263
Art of Multiprocessor Programming263 Using the Find Method Window window = find(head, key); Node pred = window.pred; curr = window.curr; Extract pred and curr
264
Art of Multiprocessor Programming© Herlihy-Shavit 2007 264 The Find Method Window window = find(item); At some instant, predcurrsucc item or …
265
Art of Multiprocessor Programming© Herlihy-Shavit 2007 265 The Find Method Window window = find(item); At some instant, pred curr= null succ item not in list
266
Art of Multiprocessor Programming266 Remove public boolean remove(T item) { Boolean snip; while (true) { Window window = find(head, key); Node pred = window.pred, curr = window.curr; if (curr.key != key) { return false; } else { Node succ = curr.next.getReference(); snip = curr.next.compareAndSet(succ, succ, false true); if (!snip) continue; pred.next.compareAndSet(curr, succ, false, false); return true; }}}
267
Art of Multiprocessor Programming267 Remove public boolean remove(T item) { Boolean snip; while (true) { Window window = find(head, key); Node pred = window.pred, curr = window.curr; if (curr.key != key) { return false; } else { Node succ = curr.next.getReference(); snip = curr.next.compareAndSet (succ, succ, false, true); if (!snip) continue; pred.next.compareAndSet(curr, succ, false, false); return true; }}} Keep trying
268
Art of Multiprocessor Programming268 Remove public boolean remove(T item) { Boolean snip; while (true) { Window window = find(head, key); Node pred = window.pred, curr = window.curr; if (curr.key != key) { return false; } else { Node succ = curr.next.getReference(); snip = curr.next.compareAndSet (succ, succ, false, true); if (!snip) continue; pred.next.compareAndSet(curr, succ, false, false); return true; }}} Find neighbors
269
Art of Multiprocessor Programming269 Remove public boolean remove(T item) { Boolean snip; while (true) { Window window = find(head, key); Node pred = window.pred, curr = window.curr; if (curr.key != key) { return false; } else { Node succ = curr.next.getReference(); snip = curr.next.compareAndSet(succ, succ, false, true); if (!snip) continue; pred.next.compareAndSet(curr, succ, false, false); return true; }}} Not there …
270
Art of Multiprocessor Programming270 Remove public boolean remove(T item) { Boolean snip; while (true) { Window window = find(head, key); Node pred = window.pred, curr = window.curr; if (curr.key != key) { return false; } else { Node succ = curr.next.getReference(); snip = curr.next.compareAndSet(succ, succ, false, true); if (!snip) continue; pred.next.compareAndSet(curr, succ, false, false); return true; }}} Try to mark node as deleted
271
Art of Multiprocessor Programming271 Remove public boolean remove(T item) { Boolean snip; while (true) { Window window = find(head, key); Node pred = window.pred, curr = window.curr; if (curr.key != key) { return false; } else { Node succ = curr.next.getReference(); snip = curr.next.compareAndSet(succ, succ, false, true); if (!snip) continue; pred.next.compareAndSet(curr, succ, false, false); return true; }}} If it doesn’t work, just retry, if it does, job essentially done
272
Art of Multiprocessor Programming272 Remove public boolean remove(T item) { Boolean snip; while (true) { Window window = find(head, key); Node pred = window.pred, curr = window.curr; if (curr.key != key) { return false; } else { Node succ = curr.next.getReference(); snip = curr.next.compareAndSet(succ, succ, false, true); if (!snip) continue; pred.next.compareAndSet(curr, succ, false, false); return true; }}} Try to advance reference (if we don’t succeed, someone else did or will). Try to advance reference (if we don’t succeed, someone else did or will). a
273
Art of Multiprocessor Programming273 Add public boolean add(T item) { boolean splice; while (true) { Window window = find(head, key); Node pred = window.pred, curr = window.curr; if (curr.key == key) { return false; } else { Node node = new Node(item); node.next = new AtomicMarkableRef(curr, false); if (pred.next.compareAndSet(curr, node, false, false)) {return true;} }}}
274
Art of Multiprocessor Programming274 Add public boolean add(T item) { boolean splice; while (true) { Window window = find(head, key); Node pred = window.pred, curr = window.curr; if (curr.key == key) { return false; } else { Node node = new Node(item); node.next = new AtomicMarkableRef(curr, false); if (pred.next.compareAndSet(curr, node, false, false)) {return true;} }}} Item already there
275
Art of Multiprocessor Programming275 Add public boolean add(T item) { boolean splice; while (true) { Window window = find(head, key); Node pred = window.pred, curr = window.curr; if (curr.key == key) { return false; } else { Node node = new Node(item); node.next = new AtomicMarkableRef(curr, false); if (pred.next.compareAndSet(curr, node, false, false)) {return true;} }}} create new node
276
Art of Multiprocessor Programming276 Add public boolean add(T item) { boolean splice; while (true) { Window window = find(head, key); Node pred = window.pred, curr = window.curr; if (curr.key == key) { return false; } else { Node node = new Node(item); node.next = new AtomicMarkableRef(curr, false); if (pred.next.compareAndSet(curr, node, false, false)) {return true;} }}} Install new node, else retry loop
277
Art of Multiprocessor Programming277 Wait-free Contains public boolean contains(T item) { boolean marked; int key = item.hashCode(); Node curr = head; while (curr.key < key) curr = curr.next; Node succ = curr.next.get(marked); return (curr.key == key && !marked[0]) }
278
Art of Multiprocessor Programming278 Wait-free Contains public boolean contains(T item) { boolean marked; int key = item.hashCode(); Node curr = head; while (curr.key < key) curr = curr.next; Node succ = curr.next.get(marked); return (curr.key == key && !marked[0]) } Only difference is that we get and check marked
279
Art of Multiprocessor Programming279 Lock-free Find public Window find(Node head, int key) { Node pred = null, curr = null, succ = null; boolean[] marked = {false}; boolean snip; retry: while (true) { pred = head; curr = pred.next.getReference(); while (true) { succ = curr.next.get(marked); while (marked[0]) { … } if (curr.key >= key) return new Window(pred, curr); pred = curr; curr = succ; } }}
280
Art of Multiprocessor Programming280 Lock-free Find public Window find(Node head, int key) { Node pred = null, curr = null, succ = null; boolean[] marked = {false}; boolean snip; retry: while (true) { pred = head; curr = pred.next.getReference(); while (true) { succ = curr.next.get(marked); while (marked[0]) { … } if (curr.key >= key) return new Window(pred, curr); pred = curr; curr = succ; } }} If list changes while traversed, start over
281
Art of Multiprocessor Programming281 public Window find(Node head, int key) { Node pred = null, curr = null, succ = null; boolean[] marked = {false}; boolean snip; retry: while (true) { pred = head; curr = pred.next.getReference(); while (true) { succ = curr.next.get(marked); while (marked[0]) { … } if (curr.key >= key) return new Window(pred, curr); pred = curr; curr = succ; } }} Lock-free Find Start looking from head
282
Art of Multiprocessor Programming282 public Window find(Node head, int key) { Node pred = null, curr = null, succ = null; boolean[] marked = {false}; boolean snip; retry: while (true) { pred = head; curr = pred.next.getReference(); while (true) { succ = curr.next.get(marked); while (marked[0]) { … } if (curr.key >= key) return new Window(pred, curr); pred = curr; curr = succ; } }} Lock-free Find Move down the list
283
Art of Multiprocessor Programming283 public Window find(Node head, int key) { Node pred = null, curr = null, succ = null; boolean[] marked = {false}; boolean snip; retry: while (true) { pred = head; curr = pred.next.getReference(); while (true) { succ = curr.next.get(marked); while (marked[0]) { … } if (curr.key >= key) return new Window(pred, curr); pred = curr; curr = succ; } }} Lock-free Find Get ref to successor and current deleted bit
284
Art of Multiprocessor Programming284 public Window find(Node head, int key) { Node pred = null, curr = null, succ = null; boolean[] marked = {false}; boolean snip; retry: while (true) { pred = head; curr = pred.next.getReference(); while (true) { succ = curr.next.get(marked); while (marked[0]) { … } if (curr.key >= key) return new Window(pred, curr); pred = curr; curr = succ; } }} Lock-free Find Try to remove deleted nodes in path…code details soon
285
Art of Multiprocessor Programming285 public Window find(Node head, int key) { Node pred = null, curr = null, succ = null; boolean[] marked = {false}; boolean snip; retry: while (true) { pred = head; curr = pred.next.getReference(); while (true) { succ = curr.next.get(marked); while (marked[0]) { … } if (curr.key >= key) return new Window(pred, curr); pred = curr; curr = succ; } }} Lock-free Find If curr key that is greater or equal, return pred and curr
286
Art of Multiprocessor Programming286 public Window find(Node head, int key) { Node pred = null, curr = null, succ = null; boolean[] marked = {false}; boolean snip; retry: while (true) { pred = head; curr = pred.next.getReference(); while (true) { succ = curr.next.get(marked); while (marked[0]) { … } if (curr.key >= key) return new Window(pred, curr); pred = curr; curr = succ; } }} Lock-free Find Otherwise advance window and loop again
287
Art of Multiprocessor Programming287 Lock-free Find retry: while (true) { … while (marked[0]) { snip = pred.next.compareAndSet(curr, succ, false, false); if (!snip) continue retry; curr = succ; succ = curr.next.get(marked); } …
288
retry: while (true) { … while (marked[0]) { snip = pred.next.compareAndSet(curr, succ, false, false); if (!snip) continue retry; curr = succ; succ = curr.next.get(marked); } … Art of Multiprocessor Programming288 Lock-free Find Try to snip out node
289
retry: while (true) { … while (marked[0]) { snip = pred.next.compareAndSet(curr, succ, false, false); if (!snip) continue retry; curr = succ; succ = curr.next.get(marked); } … Art of Multiprocessor Programming289 Lock-free Find if predecessor’s next field changed, retry whole traversal
290
Art of Multiprocessor Programming290 Lock-free Find retry: while (true) { … while (marked[0]) { snip = pred.next.compareAndSet(curr, succ, false, false); if (!snip) continue retry; curr = succ; succ = curr.next.get(marked); } … Otherwise move on to check if next node deleted
291
Performance Different list-based set implementaions 16-node machine Vary percentage of contains() calls Art of Multiprocessor Programming291
292
Art of Multiprocessor Programming292 High Contains Ratio Lock-free Lazy list Coarse Grained Fine Lock-coupling
293
Art of Multiprocessor Programming293 Low Contains Ratio
294
Art of Multiprocessor Programming294 As Contains Ratio Increases % Contains()
295
Art of Multiprocessor Programming295 Summary Coarse-grained locking Fine-grained locking Optimistic synchronization Lazy synchronization Lock-free synchronization
296
Art of Multiprocessor Programming296 “To Lock or Not to Lock” Locking vs. Non-blocking: –Extremist views on both sides The answer: nobler to compromise –Example: Lazy list combines blocking add() and remove() and a wait-free contains() –Remember: Blocking/non-blocking is a property of a method
297
Art of Multiprocessor Programming297 This work is licensed under a Creative Commons Attribution- ShareAlike 2.5 License.Creative Commons Attribution- ShareAlike 2.5 License You are free: –to Share — to copy, distribute and transmit the work –to Remix — to adapt the work Under the following conditions: –Attribution. You must attribute the work to “The Art of Multiprocessor Programming” (but not in any way that suggests that the authors endorse you or your use of the work). –Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under the same, similar or a compatible license. For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to –http://creativecommons.org/licenses/by-sa/3.0/. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author's moral rights.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.