Presentation is loading. Please wait.

Presentation is loading. Please wait.

A. Barbe, M.-R. De Backer-Barilly, Vl.G. Tyuterev Analysis of CW-CRDS spectra of 16 O 3 : 6000 to 6200 cm -1 spectral range Groupe de Spectrométrie Moléculaire.

Similar presentations


Presentation on theme: "A. Barbe, M.-R. De Backer-Barilly, Vl.G. Tyuterev Analysis of CW-CRDS spectra of 16 O 3 : 6000 to 6200 cm -1 spectral range Groupe de Spectrométrie Moléculaire."— Presentation transcript:

1 A. Barbe, M.-R. De Backer-Barilly, Vl.G. Tyuterev Analysis of CW-CRDS spectra of 16 O 3 : 6000 to 6200 cm -1 spectral range Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 6089, Université de Reims, FRANCE A. Campargue, S. Kassi, D. Romanini Laboratoire de Spectrométrie Physique, UMR CNRS 5588, Université Joseph Fourier, Grenoble, FRANCE

2 The compact fibered CW-CRDS spectrometer (Grenoble) 1480-1687 nm (5800-7000 cm -1 ) Typical sensitivity 3  10 -10 cm -1 Lambdameter Photodiode Optical isolator Laser diode Coupler AO Modulator laser ON -50050100 threshold =f(T,I) 6nm/diode 40 diodes

3 Illustration of the achieved sensitivity: The example of the a 1 Δ g (0)−X 3  g −(1) of O 2 k=8×10 -31 cm/molec Chem. Phys. Lett. 409 (2005) 281–287

4 2 1 +2 2 +3 3 # 1 +2 2 +4 3 1 +2 2 +4 3 1 +5 3 # 1 +5 3 # 2 1 +3 2 +3 3 - 2  2 +4 3  1 + 2 Global survey of the 6000 – 6200 cm -1 spectral range

5 (034) (510) (161) (223) (124) 6000 6100 6200 E/hc (cm -1 ) (105) Vibrational states and resonance scheme

6 Assignments :   vibration : predictions from Vl. G. Tyuterev – keep the usual label v 1 v 2 v 3.   rotation : use of ASSIGN program (Chichery A.) based on Ground State Combination Differencies (GSCD) - J Ka Kc   calculation of energy levels, transitions, and intensities : GIP program. (S. A. Taskhun) Hamiltonian matrix

7 Line intensities

8 Parameter (034)(105)(161)(510)(223)(124) E VV 6046.0695 5 (39)6063.9224 0 (14)6087.49 7 (96)6100.216 9 (11)6124.2868 4 (17)6154.7022 8 (17) A-(B+C)/23.17361 0 (38)2.986584 0 (96)3.3693 9 (65)3.18355 3 (59)3.08038 5 (13)3.12386 8 (15) (B+C)/20.397501 7 (77)0.397791 6 (12)0.39510 9 (39)0.411598 7 (15)0.393315 9 (95)0.394631 8 (59) (B-C)/20.026367 6 (74)0.025642 4 (13)0.02267 9 (60)0.018995 5 (75)0.026462 7 (97)0.027105 7 (72) KK  10 3 g0.1915 4 (19)gg0.2824 3 (14)0.2621 2 (29)  JK  10 5 g-0.504 9 (13)gg0.045 1 (16)-0.549 8 (16) JJ  10 6 g0.4218 4 (75)gg0.663 3 (13)0.3257 8 (37) JJ  10 6 g0.1043 5 (40)g0.133 9 (43)0.0461 7 (81)0.1190 7 (26)   10 5 g0.153 6 (84)gg0.84 0 (11)0.559 3 (47)   10 6 gggg0.1045 8 (48)g Coupling parameters Spectroscopic parameters (cm -1 )

9 state of the work Vibrational Assignment Band center (cm -1 ) Number of transitions J maxK a maxrms (×10 3 ) cm -1 completed (233)  (010) 6015.60532237113.7 In progress (034)  (000)* 6046.97015140432.1 completed (105)  (000) 6063.93353143103.3 completed (510)  (000) * 6100.2162229410.2 completed (223)  (000) 6124.28650744145.4 completed (124)  (000)* 6154.7024794975.9 6.8 Range of upper state quantum number

10 OperatorParametersValue Number of transitions (J max, K a max) rms deviation (%) 3 2 +4 3 band d 1 (×10 5 ) 0.51 4 (11)101 (40, 3) 26.5 d 2 (×10 8 ) -0.294 2 (76) d 5 (×10 6 ) -0.802 7 (11) 1 + 5 3 band d 1 (×10 4 ) -0.3190 7 (43)248 (43, 10) 37.7 d 3 (×10 7 ) -0.200 3 (84) d 5 (×10 8 ) 0.980(46) 2 1 + 2 2 +3 3 band d 1 (×10 4 ) -0.846 4 (12)238 (42, 14) 29.2 d 2 (×10 7 ) 0.137 9 (11) 1 + 2 2 +4 3 band d 1 (×10 4 ) 0.1184 9 (70)134 (42, 6) 52.6 d 2 (×10 8 ) -0.72 7 (11) d 5 (×10 5 ) -0.14783 (28) Parameters of the transition moment operators (Debye)

11 * * Observed Calculated * CO 2 30 1 31 2 23 5 22 6 26 6 25 7 21 2 22 1 23 2 24 1 29 1 28 0 25 2 26 1 19 2 20 1 Wavenumber (cm -1 ) Absorption Coefficient (a.u.) Observed and calculated spectrum of the 1 + 2 2 + 4 3 band in the 6156 – 6157 cm -1 range

12 Remarks : B - type band intensities Observing and assigning B type bands (ΔKa= ± 1) at this high energy level range (>6000 cm -1 ) represent a challenge Remember : with the Reims F.T.S, the highest observed B-type bands were 2 1 +2 3 ( 4141 cm -1 ) and 2 1 + 2 +2 3 (4783 cm -1 ).   A-type bands are strong and their feature presents a compressed R branch.   B-type bands are much weaker than A-type bands at a given energy level range and they extend over a much larger spectral range. In general, FOR OZONE : B-type bands are never totally observed, being overlapped by stronger A-type bands, and often partly hidden by impurities, like H 2 O,CO 2,CO… Finally, the general shapes of the B-type bands are difficult to reproduce in a first attempt :   6 types of transitions may be observed   Necessity to introduce unknown additional transition moment parameters d 5 in order to reproduce the line intensity observations and to “reduce” the Q branches which are not visible in the spectra.

13 Transmission (a.u.) Wavenumber (cm -1 ) Only d 1 for B-type band ( d 5 =0): All d i fitted parameters for B-type band All d i parameters for A-type band = 0 All d i fitted parameters for A and B type bands Calculated spectra of the 1 + 2 2 + 4 3 band in 3 cases (normalisation on observed lines in the 6155 cm -1 region)

14 Conclusion For the first time, the high sensitivity of the CW-CRDS experimental set-up allowed to observe many weak rovibrational transitions of ozone in the 6000-7000 cm -1 spectral range. All the “relatively strong or medium intensity” lines are rotationally undoubtedly assigned. This work confirms that the usual scheme of polyads for ozone (same value of v 2 and Coriolis and Darling-Dennison resonances) becomes less and less valid. Necessity to introduce large vibrational couplings between many vibrational states in a given neighborhood, even with large value of v 2 Predictions of the interactions strengths between various partners become a real challenge, as the number of possible interacting states becomes obviously larger and larger as far as the energy is increasing Using effective Hamiltonians and effective transition moment operators, we can correctly reproduce the observed spectra for A and B-type bands. We continue to study theoretically and experimentally the ozone spectra in these high energy ranges in order to have a good final understanding of the dipole and of the potential functions.


Download ppt "A. Barbe, M.-R. De Backer-Barilly, Vl.G. Tyuterev Analysis of CW-CRDS spectra of 16 O 3 : 6000 to 6200 cm -1 spectral range Groupe de Spectrométrie Moléculaire."

Similar presentations


Ads by Google