Presentation is loading. Please wait.

Presentation is loading. Please wait.

SCAPE: Shape Completion and Animation PEople Stanford University Dragomir Anguelov Praveen Srinivasan Daphne Koller Sebastian Thrun Jim Rodgers UC, Santa.

Similar presentations


Presentation on theme: "SCAPE: Shape Completion and Animation PEople Stanford University Dragomir Anguelov Praveen Srinivasan Daphne Koller Sebastian Thrun Jim Rodgers UC, Santa."— Presentation transcript:

1 SCAPE: Shape Completion and Animation PEople Stanford University Dragomir Anguelov Praveen Srinivasan Daphne Koller Sebastian Thrun Jim Rodgers UC, Santa Cruz James Davis

2 Shape Completion

3 Animation PEople

4 Overview Training Data Set Black Box Human Pose/Shape Parameters Data Acquired Complete Meshes Non-Linear Optimization

5 Black Box Pose Deformation Model Non-rigid and rigid deformation Shape Deformation Model Variation across different individuals

6 Pose Deformation Model Non-Rigid Transform Q k Rigid Transform R L[k]

7 Mesh Reconstruction argminΣ k Σ j=2,3 || R i L[k] Q i k v’ jk – (y jk – y 1k ) || 2 y 1, …, y m Y1,k Y2,k Y3,k V2,k V3,k K-th Tri [Sumner et. al. 2004] Deformation Transfer for Triangle Meshes

8 Learning Parameter Q(R) argminΣ k Σ j=2,3 || R i k Q i k v’ kj – v i kj || 2 + {Q i 1 …Q i P } w s Σ k1, k2 adj I (L k1 = L k2 ) ||Q i k1 – Q i k2 || 2 Reconstruction_Cost argmin Reconstruction_Cost + {Q i 1 …Q i P } Smoothness_Cost =

9 Parameters of Pose Model Black Box Pose Deformation Model Human Parameters Pose Parameters Q

10 Shape Deformation Model Reconstruction argminΣ k Σ j=2,3 || R i k S i k Q i k (R)v’ kj – v i kj || 2 {Y 1 …Y m } V’k,2 V’k,3 V’k,2 V’k,3 SikSik

11 Learning Parameter S argminΣ k Σ j=2,3 || R i k S i k Q i k v’ kj – v i kj || 2 + {S i } w s Σ k1, k2 adj ||S i k1 – S i k2 || 2 Reconstruction_Cost argmin Reconstruction_Cost + {S i } Smoothness_Cost S i = φ U, μ ( β i ) = U β i + μ

12 Parameters of Shape Model Black Box Pose Deformation Model Shape Deformation Model Pose Parameters Q Shape Parameters U, μ Human Parameters Estimation of Human Model

13 E H [Y] = argminΣ k Σ j=2,3 || R k φ (β) Q k v’ jk – (y jk –y 1k ) || 2 y 1, …, y m Q-coefficient U-EigenVector, μ-mean Rotation β- mesh coefficient

14 Shape-Completion / Animation Training Data Set E H [Y] Q, U, μ R, β + E H [Y] + w z Σ L ||y L - z L || 2

15 Limitation Trained Model (Linear Regression Model) vs. particular pose/shape Susceptible to local-minimum(?) Skeleton Based


Download ppt "SCAPE: Shape Completion and Animation PEople Stanford University Dragomir Anguelov Praveen Srinivasan Daphne Koller Sebastian Thrun Jim Rodgers UC, Santa."

Similar presentations


Ads by Google