Presentation is loading. Please wait.

Presentation is loading. Please wait.

PRECIPITATION-RUNOFF MODELING SYSTEM (PRMS) STORM-MODE COMPONENTS.

Similar presentations


Presentation on theme: "PRECIPITATION-RUNOFF MODELING SYSTEM (PRMS) STORM-MODE COMPONENTS."— Presentation transcript:

1 PRECIPITATION-RUNOFF MODELING SYSTEM (PRMS) STORM-MODE COMPONENTS

2 BASIC HYDROLOGIC MODEL Q = P - ET  S Runoff Precip Met Vars Ground Water Soil Moisture Reservoirs Basin Chars Snow & Ice Water use Soil Moisture Components

3 PRMS

4 HYDROLOGIC RESPONSE UNITS (HRUs)

5 HRUs as FLOW PLANES & CHANNELS (Storm Mode)

6 SOIL MOISTURE ACCRETION - DAILY MODE - STORM MODE infil(hru) = net_precip(hru) - sroff(hru) Point Infil (fr) fr = dI/dt = ksat * [1. + (ps /  fr)] Areal Infil (fin) qrp = (.5 * net_precip 2 / fr ) net_precip < fr qrp = net_precip - (.5 * fr) Otherwise fin = net_precip - qrp

7 INFILTRATION SOIL PROFILE wpsatfc moisture content depth true relations profile t 0 + Profile t 0

8 Darcy’s Law Applied to Profile depth h x p Total head = h + x + p di/dt = K [(h + x + p) / x] i I = x (m t -m 0 ) h<<p mtmt m0m0 di/dt = K (1. + [p (m t - m 0 ) / i][Green & Ampt]

9 INFILTRATION - STORM MODE Point Infil (FR) FR = dI/dt = ksat * [1. + (ps / I)]

10 Computation of PS

11 AREAL INFILTRATION (FIN) RE = (.5 * PTN 2 / FR ) PTN < FR RE = PTN - (.5 * FR) Otherwise FIN = PTN - RE

12 SURFACE RUNOFF h infil q net precip tt xx qq hh = re+ x

13 Finite Difference Scheme Nodes with known values time t distance x t0t0 t1t1 t2t2 xx Solution node

14 Overland Flow q d = q c + re  x - (  x/  t) ( h c -h a ) h d = ( q d /  ) 1/m  = m (  t /  x ) (q b / h b ) For  >= 1

15 Overland Flow h d = h b + re  x - (  t/  x) ( q a -q b ) q d =  h d m  = m (  t /  x ) (q b / h b ) For  < 1

16 CHANNEL FLOW  tt QQ xx += q

17 Finite Difference Scheme Nodes with known values t x t0t0 t1t1 t2t2 xx Solution node

18 Available Channel Types Rectangular Triangular Input width Input width from left and right bank to center line at one foot depth

19 RADAR DATA NEXRAD vs S-POL, Buffalo Creek, CO

20 Buffalo Creek Watershed, CO

21

22

23

24

25 PRMS

26

27 ANIMAS RIVER, CO SURFACE GW SUBSURFACE PREDICTED MEASURED

28 PRMS

29 SUBSURFACE FLOW = IN - (ssrcoef_lin * S) - -----(ssrcoef_sq * S 2 ) dS dt IN Subsurface Reservoir Equation solved at dt time step using analytical solution

30 PRMS

31 GROUND-WATER FLOW gwres_flow= gwflow_coeff * ------------------gwres_stor soil_to_gw + ssr_to_gw Ground-water Reservoir Equation solved at 15 minute dt and pro rated to shorter dt as needed

32 SEDIMENT - OVERLAND FLOW tt xx  cq)  ch) = er + ef + h infil q net precip x Sediment conc (c)

33 Interrill Detachment & Transport - er er = kr * net_precip(hru) 2 * e - (hc * hbar 2 )

34 Rill Detachment & Transport - ef ef = kf * ( tc - tr) tc = transport capacity tr = current transport rate tc = mm * hbar en

35

36

37 SEDIMENT - CHANNEL FLOW  cA tt  cQ xx += sed_lat sed_lat cQ c

38 Reservoir Routing Linear Routing res_out = sfres_coef * sfres_stor Modified Puls Routing 2 * sto 2 + O 2 = (I 2 - I 1 ) + 2 * sto 1 tt tt - O 1


Download ppt "PRECIPITATION-RUNOFF MODELING SYSTEM (PRMS) STORM-MODE COMPONENTS."

Similar presentations


Ads by Google