Download presentation
Presentation is loading. Please wait.
Published byAron Lester Modified over 9 years ago
1
數位影像中熵的計算與應用 義守大學 資訊工程學系 黃健興
2
Outline Entropy Definition Entropy of images Applications Visual Surveillance System Background Extraction Conclusions
3
Concept of Entropy Rudolf Julius Emanuel Clausius, 1864 化學及熱力學 測量在動力學方面不能做功的能量總數 計算一個系統中的失序現象 描述系統狀態的函數 經常用熵的參考值和變化量進行分析比較
4
Information Theory Claude Elwood Shannon, 1948 運用機率論與數理統計的方法研究資訊 編碼學 密碼學與密碼分析學 數據傳輸 數據壓縮 檢測理論 估計理論 數據加密
5
Definition E is the expected value, I is the information content of X. p denotes the probability mass function of X
6
Advantage Whole Image M×N Matrix Histogram N×1 Vector Entropy Single value
7
Entropy of Image Pixel Color Pixel Distribution Horizontal Vertical Texture
8
The Statistic of gray-level
9
Position Information Normalize the size of image Edge Detection Sobel Canny Horizontal Projection Vertical Projection
10
Sobel Edge Detection Sobel Filter
11
Sobel Edge Detection(cont.)
13
Horizontal Projection 0 240
14
Horizontal Projection(cont.)
15
Vertical Projection 0320
16
Vertical Projection(cont.)
17
Pattern Texture Pattern Center Pixel g c Surrounding Pixel g i (i=0, 1,…,p-1) Label Local Binary Pattern
18
Local Binary Pattern(cont.)
19
Definition E is the expected value, I is the information content of X. p denotes the probability mass function of X
20
Applications Visual Surveillance System variance of video information Background Extraction Block for pixel
21
Visual Surveillance System F 60 F 63 F 68 F 69 F 2 F 45 F 20
22
Visual Surveillance System
23
Gray Prediction – GM(1,1)
24
Gray Prediction – GM(1,1) (cont.) Step 1: Step 2: Step 3:
25
Gray Prediction – GM(1,1) (cont.) Step 4: Step 5:
26
Gray Prediction – GM(1,1) (cont.) Step 6: Step 7:
27
Visual Surveillance System
29
Background Extraction Non-recursive approaches Selective update using temporal averaging Selective update using temporal median Selective update using non-foreground pixels Non-parametric model Time Interval (I t-L,I t-L+1,I t-1 ) Probability Density Function
30
Background Extraction Recursive approaches Kalman filter Mixture of Gaussians (MoG) Parametric model Matching Updata
31
Improved Method Treat the n×n block as a pixel
32
Improved Method(cont.)
33
Conclusions Reduce Memory Size Enhanced Performance Quantize the content of image Judgment of the variance
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.