Presentation is loading. Please wait.

Presentation is loading. Please wait.

Virologia Applicata E.A. Influenza VIROLOGIA. Virologia Applicata E.A. Influenza The virus and its replication.

Similar presentations


Presentation on theme: "Virologia Applicata E.A. Influenza VIROLOGIA. Virologia Applicata E.A. Influenza The virus and its replication."— Presentation transcript:

1 Virologia Applicata E.A. Influenza VIROLOGIA

2 Virologia Applicata E.A. Influenza The virus and its replication

3 Virologia Applicata E.A. Genus Orthomixovirus Species (* indicates type species) Serotypes or SubtypesHosts Influenza virus AInfluenza A virus (*)H1N1, H1N2, H2N2, H3N1, H3N2, H3N8, H5N1, H5N2, H5N3, H5N8, H5N9, H7N1, H7N2, H7N3, H7N4, H7N7, H9N2, H10N7 Human, pig, bird, horse Influenza virus BInfluenza B virus (*)Human, seal Influenza virus CInfluenza C virus (*)Human, pig Influenza virus (Orthomyxovirus)

4 Virologia Applicata E.A. Influenza A virus: HA subtypes SubtypeHumanSwineHorseBird H1... H2.. H3.... H4. H5. H6. H7.. H8. H9. H10. H11. H12. H13. H14. H15. H16.

5 Virologia Applicata E.A. Influenza virus nomeclature HxNy (where 1 < x <16 and 1 < y < 9)

6 Virologia Applicata E.A. Influenza virus (Orthomyxovirus)

7 Virologia Applicata E.A.

8 Influenza virus

9 Virologia Applicata E.A. Influenza A virus genome RNA segments and coding assignments

10 Virologia Applicata E.A. Influenza virus life cycle

11 Virologia Applicata E.A. Influenza A virus: attachment Binds to cell surface carbohydrate - sialic acid Ubiquitous receptor Can be present as part of glycoprotein or glycolipid Specific requirement for  2-3 and  2-6 linkages gives different tropism for avian vs. human cells (pigs have both)

12 Virologia Applicata E.A. Influenza A virus: attachment Specific preferences for receptors and/or linkages gives different tropism for influenza viruses

13 Virologia Applicata E.A. Influenza A virus: attachment

14 Virologia Applicata E.A. Influenza A virus: entry

15 Virologia Applicata E.A. Influenza A virus: uncoating

16 Virologia Applicata E.A. Influenza A virus transcription and replication

17 Virologia Applicata E.A. Influenza A virus transcription and replication

18 Virologia Applicata E.A. Influenza A virus: maturation and budding

19 Virologia Applicata E.A. Influenza Pathogenesis

20 Virologia Applicata E.A.

21 Influenza virus: the infection Influenza virus enters through the nose and settles in the respiratory tract

22 Virologia Applicata E.A. Influenza virus:pathogenesis

23 Virologia Applicata E.A. Incubation : 1- 4 days Prodromic phase: malaise, headache Disease’s symptoms: fever (3-8 days), mialgia, cough The infection typically resolves within 7-10 days through the action of the innate and acquired immune systems Complications: »Pneumonia (viral),Pneumonia (bacterial), Myosites, Encephalitises, Convulsions »Reye Syndrome (treatment with aspirin) Influenza virus: the disease features

24 Virologia Applicata E.A. Influenza virus: the immune response

25 Virologia Applicata E.A. Influenza Epidemiology

26 Virologia Applicata E.A. Antigenic variation of influenza virus envelope proteins Antigenic drift Is the appearance of a virus with a slightly altered surface protein (antigen) structure following passage in the natural host. This process occurs by accumulating substitution mutations that facilitate evasion of the host immune response. Antigenic shift Is a major change in the protein of a virus as completely new surface proteins are acquired by the virus. This process occurs when viruses with segmented genomes exchange segments after coinfection. The new reassortant viruses display dramatic changes in surface proteins that facilitate escape from immune surveillance.

27 Virologia Applicata E.A. Influenza virus: the antigenic drift

28 Virologia Applicata E.A. Influenza virus: the antigenic shift

29 Virologia Applicata E.A. A pandemic strain of influenza may occur by genetic reassortment between human and avian viruses, or by adaptation of an avian virus. This may involve avian viruses from aquatic birds or domestic poultry, and could potentially involve an additional species such domestic pig. Reassortment could involve simply the HA gene, both HA and NA genes, or combinantion of HA and other genes from the avian virus Generation of pandemic influenza virus strains

30 Virologia Applicata E.A. Models for the generation of pandemic influenza virus strains In the classical genetic reassortment model, avian and human viruses bind their respective receptors in the pig tracheal epithelium In the adaptation model, avian viruses acquire the ability to replicate efficiently in humans by adapting to the human receptor in pigs. The change is mediated by a mutation in the HA gene

31 Virologia Applicata E.A. Models for the generation of pandemic influenza virus strains An avian virus may infect a human and reassort with a human virus An avian virus may infect a human and acquire the ability to recognize the receptor on human epithelial cells, leading to efficient replication in humans and the ability to spread from human to human

32 Virologia Applicata E.A. The 1918 flu was H1N1 The 1957 “Asian flu” was H2N2 The 1968 “Hong Kong flu” was H3N2 The 1977 “Russian flu” was H1N1 Eras of human Influenza A virus

33 Virologia Applicata E.A. Postulated evolution of human influenza virus A from 1889 to 1977 Antigenic shift, not drift, was the driving force for the five pandemics of human influenza during the past century

34 Virologia Applicata E.A. Origins of the major human pandemic influenza virus strains

35 Virologia Applicata E.A. Influenza Prevention and control

36 Every year, an estimated 3 million to 5 million people worldwide become seriously ill from influenza, and as many as 500,000 - primarily children and the elderly – die from the ensuing complications.

37 Virologia Applicata E.A. Influenza virus infection: prevention

38 Virologia Applicata E.A. 2010-2011 Northern Hemisphere winter season The composition of virus vaccines for use in the 2010-2011 Northern Hemisphere influenza season recommended by the World Health Organization on February 18, 2010 was: * an A/California/7/2009 (H1N1)-like virus; * an A/Perth/16/2009 (H3N2)-like virus; * a B/Brisbane/60/2008-like virus. The H1N1 strain used in this composition is the same strain used in the 2009 flu pandemic vaccine

39 Virologia Applicata E.A. Influenza virus infection: therapy Antiviral Drugs for the 2007-08 Flu Season: Two flu antiviral drugs are recommended for use in the United States during the 2007-08 flu season: oseltamivir and zanamivir. Oseltamivir and zanamivir are effective against both influenza A and B viruses. Oseltamivir (Tamiflu) is approved to both treat and prevent flu in people one year of age and older. Zanamivir (Relenza)Zanamivir (Relenza) is approved to treat flu in people 7 years and older and to prevent flu in people 5 years and older. Oseltamivir (Tamiflu) Rimantadine (Flumadine)

40 Virologia Applicata E.A. Virus isolation in primary cell cultures Haemoadsorption on infected cells Haemogglutination Immunofluorescence ELISA RT-PCR Influenza virus infection: diagnosis

41 Virologia Applicata E.A. Influenza Avian flu

42 Virologia Applicata E.A.

43 Transmission electron micrograph of avian influenza H5N1 virus

44 Virologia Applicata E.A. Avian influenza virus pathogenicity All of the HPAI viruses belong to the H5 or H7 subtypes

45 Virologia Applicata E.A. Factors of probable relevance The prevalence of an avian influenza virus subtype in domestic poultry Documented human infection and human-to-human transmission of the virus Factors of unknown relevance High pathogenicity of the avian influenza virus The pathogenicity of the virus in mammals other than humans The ability of the viral haemagglutinin glycoprotein to bind to sialic-acid residues with an -2,3-linkage (avian) or with an -2,6- linkage (human) The stalk length of the viral neuraminidase glycoprotein The presence of a Lys627 instead of the Glu627 of the viral RNA polymerase protein PB2 (polymerase basic protein 2) (high virulence in mice) Factors contributing to the emergence of pandemic H5N1 influenza

46 Virologia Applicata E.A. A pandemic strain of influenza H5 may occur by genetic reassortment between human and avian viruses, or by adaptation of an avian virus. This may involve avian viruses from aquatic birds or domestic poultry, and could potentially involve an additional species such domestic pig. Reassortment could involve simply the HA gene, both HA and NA genes, or combinantion of HA and other genes from the avian virus Generation of pandemic influenza H5 virus strains

47 Virologia Applicata E.A.

48 Affected areas with confirmed cases of H5N1 avian influenza Overall mortality in reported H5N1 human cases is approximately 60%

49 Virologia Applicata E.A. Cumulative Number of Confirmed Human Cases of Avian Influenza A/(H5N1) Reported to WHO

50 Virologia Applicata E.A. Phylogenetic relationships of H5N1 viruses Currently, there are ten different groups (clades) of H5N1 viruses circulating among poultry (clade 1 and clade 2 viruses). Clade 1 viruses have caused human infections. At least three subgroup or subclades of clade 2 H5N1 viruses have infected humans to date: subclades 2.1, 2.2 and 2.3 viruses

51 Virologia Applicata E.A. Prevention of pandemic H5N1 influenza

52 Virologia Applicata E.A.

53

54 Influenza Pandemic H1N1 (swine flu) 2009

55 The 2009 pandemic influenza H1N1 (swine flu) virus

56 Generation of pandemic 2009 H1N1 (swine flu)virus 2009 H1N1 influenza virus is a quadruple reassortment with gene products from pigs (Europe and Asia origin), avian influenza and human influenza. This virus is antigenically unrelated to H1N1 influenza viruses in circulation since 1957.

57 Host and lineage origins for the gene segments of the 2009 A (H1N1) virus PB2, polymerase basic 2;PB1, polymerase basic 1;PA, polymerase acidic;HA, hemagglutinin; NP, nucleoprotein; NA, neuraminidase; M, matrix gene; NS, nonstructural gene

58 A maximum likelihood phylogenetic tree for nucleotide sequences of the HA gene of selected influenza viruses

59

60

61

62

63 Pandemic 2009 H1N1 swine flu: deaths by august 2010

64

65


Download ppt "Virologia Applicata E.A. Influenza VIROLOGIA. Virologia Applicata E.A. Influenza The virus and its replication."

Similar presentations


Ads by Google