Download presentation
Presentation is loading. Please wait.
Published byMeredith Hill Modified over 9 years ago
1
___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Assignment Problem Linear Programming
2
___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Applications Assignment Problem Assignment „1 to 1“ employeesjobs machinesjobs projectsmanagers service teams cars doctors night shifts Objective: maximize the effect of assignment
3
Linear Programming ___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Applications Example – Prague Build, Inc. Objective: minimize total distance necessary for all movements Assignment Problem Excavating shafts for basements (Michle, Prosek, Radlice, Trója) Each excavation takes 5 days 4 excavators stored in 4 separated garages (everyday‘s movement) One excavator to one destination Distances between garages and destinations
4
___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry
5
Linear Programming ___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Applications Example – Prague Build, Inc. Assignment Problem MichleProsekRadliceTrója Garage 1 5221218 Garage 2 1517610 Garage 3 825520 Garage 4 10121912 Distances
6
Linear Programming ___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Applications Example – Prague Build, Inc. Assignment Problem MichleProsekRadliceTrója Garage 1 x 11 x 12 x 13 x 14 Garage 2 x 21 x 22 x 23 x 24 Garage 3 x 31 x 32 x 33 x 34 Garage 4 x 41 x 42 x 43 x 44 Decision variables
7
Linear Programming ___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Applications Example – Prague Build, Inc. Assignment Problem Decision variables x ij = 1 if the excavator from the garage i goes to the destination j 0 otherwise Binary variable
8
Linear Programming ___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Applications Example – Prague Build, Inc. Assignment Problem Optimal solution MichleProsekRadliceTrója Garage 1 1000 Garage 2 0001 Garage 3 0010 Garage 4 0100
9
Linear Programming ___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Applications Example – Prague Build, Inc. Assignment Problem Optimal solution 1 movement MichleProsekRadliceTrója Garage 1 5 km --- Garage 2 --- 10 km Garage 3 -- 5 km - Garage 4 - 12 km -- Minimal total distance 320 km
10
___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry
11
___________________________________________________________________________ Operations Research Jan Fábry Network Models
12
___________________________________________________________________________ Operations Research Jan Fábry Nodes Arcs j jj j i j jj j iUNDIRECTEDDIRECTED UNDIRECTED NETWORK DIRECTED NETWORK Network
13
Network Models ___________________________________________________________________________ Operations Research Jan Fábry Path Sequence of arcs in which the initial node of each arc is identical with the terminal node of the preceding arc. 3 7 5
14
Network Models ___________________________________________________________________________ Operations Research Jan Fábry Path 1 3 2 4 5 6 1 2 3 4 5 6 Open Path 1 6
15
Network Models ___________________________________________________________________________ Operations Research Jan Fábry Circuit (Cycle) Path starting and ending in the same node (closed path). 1 3 2 4 5 6 1 2 3 4 5 6 1
16
Network Models ___________________________________________________________________________ Operations Research Jan Fábry Connected Network There is a path connecting every pair of nodes in the network. 1 3 2 4 5 6 1 2 3 4 5 6
17
Network Models ___________________________________________________________________________ Operations Research Jan Fábry Unconnected Network 1 3 2 4 5 6 1 2 3 4 5 6
18
Network Models ___________________________________________________________________________ Operations Research Jan Fábry Tree Connected network without any circuit. Exactly 6 arcs (n-1) Removing 1 arc Unconnected network 2 4 1 4 3 2 3 3 4 5 4 7 6 Adding 1 arc Circuit in the network
19
Network Models ___________________________________________________________________________ Operations Research Jan Fábry Tree STAR „CHRISTMAS“ TREE SNAKE
20
Network Models ___________________________________________________________________________ Operations Research Jan Fábry Spanning Tree Tree including all the nodes from the original network. 1 3 2 4 5 6 1 2 3 4 5 6
21
Network Models ___________________________________________________________________________ Operations Research Jan Fábry Evaluated Network - distance - time - cost - capacity ValuesArcs Nodes j i ii i j i ii i y ij yiyiyiyi yjyjyjyj
22
Network Models ___________________________________________________________________________ Operations Research Jan Fábry Basic Network Applications Project Management Shortest Path Problem Traveling Salesperson Problem (TSP) Minimal Spanning Tree Critical Path Method (CPM) Maximum Flow Problem Program Evaluation Review Technique (PERT)
23
___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Shortest Path Problem Network Models
24
___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Shortest Path Problem 14 14 25 10 12 15 16 15 23 3018 1 3 2 4 5 6 1 2 3 4 5 6 Shortest path between 2 nodes
25
Network Models ___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Shortest Path Problem Shortest Paths Between All Pairs of Nodes 123456 1-1424263240 214-10121826 32410-152816 4261215-2315 532182823-30 64026161530-
26
___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Traveling Salesperson Problem Network Models
27
___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Traveling Salesperson Problem (TSP) 14 14 25 10 12 15 16 15 23 3018 1 3 2 4 5 6 1 2 3 4 5 6 1 Home city Shortest tour 110 km
28
___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Minimal Spanning Tree Network Models
29
___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Minimal Spanning Tree Example - Exhibition Exhibition area with 9 locations that need electricity power Use cable for extensions Price of cable = 10 CZK / 1 m Objective: minimize the cost of all the extensions
30
Network Models ___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Minimal Spanning Tree 88 60 90 76 40 80 55 63 708575 52 71 74 61 68 43 120 35 54 Example - Exhibition 3 2 5 7 8 4 9 10 6 1 3 2 4 5 6 7 8 9 10 1Power
31
Network Models ___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Minimal Spanning Tree Example - Exhibition 60 76 40 55 52 61 68 43 35 3 2 5 7 8 4 9 10 6 1 3 2 4 5 6 7 8 9 10 1 Power Optimum 490 m 4 900 CZK
32
Network Models ___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Maximum Flow Problem 3 7 9 Input Output Capacited network Gas Fluid Traffic Information People Source Sink
33
Network Models ___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Maximum Flow Problem j i i j UNDIRECTED ARC DIRECTED ARC Flow Flow Capacity
34
Network Models ___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Maximum Flow Problem Mathematical Model Flow through each arc Capacity of the arc Quantity flowing out = Quantity flowing into (except the source and the sink) Total flow into the source = 0 Total flow out of the sink = 0 Total flow out of the source = Total flow into the sink
35
Maximum Flow Problem Example – White Lake City The city is situated on the edge of a small lake To minimize disruptive effects of possible flood Reconstruction of drain system 2 alternatives - Northern Channel & Southern Channel Objective: maximizing the quantity of water being pumped in one hour Network Models ___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry
36
___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry 2 3 5 7 900 800 370 270 410740 4 8 6 1100 220 400 300 300 280 130 1510 720 550 700 2 4 6 8 800 660 370 230 1050780 5 7 800 420 290 1400 700 250 840 3 520 470 Lake Reservoir Northern Channel Southern Channel
37
___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Northern Channel 2 3 5 7 610 220610 4 8 6 1100 220 390 300 300 130 1500 300 700 100 410 1 2 3 4 5 6 7 8 9 Optimum 1 930 m 3
38
___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Southern Channel Optimum 2 450 m 3 2 4 6 8 780 400 200 1050780 5 7 800 150 1400 360 840 3 470 470 210210210210 250 1 2 3 4 5 6 7 8 9
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.