Presentation is loading. Please wait.

Presentation is loading. Please wait.

MfD EEG/MEG Source Localization 4 th Feb 2009 Maro Machizawa Himn Sabir Expert: Vladimir Litvak.

Similar presentations


Presentation on theme: "MfD EEG/MEG Source Localization 4 th Feb 2009 Maro Machizawa Himn Sabir Expert: Vladimir Litvak."— Presentation transcript:

1 MfD EEG/MEG Source Localization 4 th Feb 2009 Maro Machizawa Himn Sabir Expert: Vladimir Litvak

2 Inverse problem 1.Existence 2.Unicity 3.Stability

3 1.Existence 2.Unicity 3.Stability Inverse problem

4 1.Existence 2.Unicity 3.Stability Inverse problem Introduction of prior knowledge is needed

5 Spatio-temporal modeling

6 Spatio-temporal modeling – step 1 Load EEG/MEG file

7 Spatio-temporal modeling – step 2 Name the analysis (optional)

8 Spatio-temporal modeling – step 3 Create/load meshes Bigger the parameter, better the resolution of the results

9 Spatio-temporal modeling – step 4 Coregister fiducial points with MRI Choose either of methods to coregister –“select” from default locations (at FIL) –“type” MNI coordinates directory –“click” manually each fiducial point from MRI images

10 Spatio-temporal modeling – step 4 Coregister fiducial points with MRI

11 Spatio-temporal modeling – step 5 Forward model

12 Spatio-temporal modeling – step 5 Bayesian model inversion

13 Spatio-temporal modeling – step 5 Invert: alternative models GS (greedy search: default): –iteratively add constraints (priors) ARD (automatic relevance determination): –iteratively remove irrelevant constraints COH (coherence): –LORETA-like smooth prior IID (independent identically distributed): –minimum norm

14 Spatio-temporal modeling – step 5 Invert: alternative models The bigger the number, the better the model -1893 -1913

15 Spatio-temporal modeling – step 5 Invert: visualization options 1 digit (ms): map on that time(ms) 2 digits (ms): video during the period 3 digits (x y z): max. voxel on that MNI coordinate

16 Spatio-temporal modeling – step 6 Window : Induced: localization on each single trial then averaged Evoked: localization on already averaged data INDUCED IMAGE

17 Spatio-temporal modeling – step 7 Image

18

19 Group analysis: same analysis on multiple subjects

20 (Optional step5) Variational Bayes Equivalent Current Dipole

21 Optional: time-voltage display


Download ppt "MfD EEG/MEG Source Localization 4 th Feb 2009 Maro Machizawa Himn Sabir Expert: Vladimir Litvak."

Similar presentations


Ads by Google