Presentation is loading. Please wait.

Presentation is loading. Please wait.

Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Lecture 12 of 42 William H. Hsu Department.

Similar presentations


Presentation on theme: "Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Lecture 12 of 42 William H. Hsu Department."— Presentation transcript:

1 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Lecture 12 of 42 William H. Hsu Department of Computing and Information Sciences, KSU KSOL course page: http://snipurl.com/v9v3http://snipurl.com/v9v3 Course web site: http://www.kddresearch.org/Courses/CIS730http://www.kddresearch.org/Courses/CIS730 Instructor home page: http://www.cis.ksu.edu/~bhsuhttp://www.cis.ksu.edu/~bhsu Reading for Next Class: Section 8.3 – 8.4, p. 253 - 266, Russell & Norvig 2 nd edition Handout, Nilsson & Genesereth, Logical Foundations of Artificial Intelligence Intro to First-Order Logic: Syntax and Semantics

2 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Lecture Outline Reading for Next Class: 8.3-8.4 (p. 253-266), 9.1 (p. 272-274), R&N 2 e Last Class: Propositional Logic, Sections 7.5-7.7 (p. 211-232), R&N 2 e  Properties of sentences (and sets of sentences, aka knowledge bases)  entailment  provability/derivability  validity: truth in all models (aka tautological truth)  satisfiability: truth in some models  Properties of proof rules  soundness: KB ⊢ i α  KB ⊨ α (can prove only true sentences)  completeness: KB ⊨ α  KB ⊢ i α (can prove all true sentences) Still to Cover in Chapter 7: Resolution, Conjunctive Normal Form (CNF) Today: Intro to First-Order Logic, Sections 8.1-8.2 (p. 240-253), R&N 2 e  Elements of logic: ontology and epistemology  Resolution theorem proving  First-order predicate calculus (FOPC) aka first order logic (FOL) Coming Week: Propositional and First-Order Logic (Ch. 8 – 9)

3 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence © 2004 S. Russell & P. Norvig. Reused with permission. Chapter 7 Concluded

4 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence © 2004 S. Russell & P. Norvig. Reused with permission. Inference: Review

5 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence © 2004 S. Russell & P. Norvig. Reused with permission. Validity and Satisfiability: Review

6 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Forward Chaining Example: Review Adapted from slides © 2004 S. Russell & P. Norvig. Reused with permission. 2 2 2 21 n: number of antecedents (LHS conjuncts) still unmatched 1 1 2 21 1 0 1 21 1 0 0 11 1 0 0 0 1 0 0 0 00 0 0 0 00

7 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Backward Chaining Example: Review © 2004 S. Russell & P. Norvig. Reused with permission.

8 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Forward vs. Backward Chaining: Review © 2004 S. Russell & P. Norvig. Reused with permission.

9 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Resolution [1]: Propositional Sequent Rule Based on slide © 2004 S. Russell & P. Norvig. Reused with permission.

10 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Resolution [2]: Conversion to Conjunctive Normal Form (CNF) Based on slide © 2004 S. Russell & P. Norvig. Reused with permission.

11 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Resolution [3]: Algorithm Based on slide © 2004 S. Russell & P. Norvig. Reused with permission.

12 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Resolution [4]: Example Based on slide © 2004 S. Russell & P. Norvig. Reused with permission.

13 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Chapter 7: Summary © 2004 S. Russell & P. Norvig. Reused with permission.

14 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Chapter 8: Overview © 2004 S. Russell & P. Norvig. Reused with permission.

15 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Propositional Logic: Pros and Cons Based on slide © 2004 S. Russell & P. Norvig. Reused with permission.

16 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence First-Order Logic (FOL) Based on slide © 2004 S. Russell & P. Norvig. Reused with permission.

17 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Logics in General: Ontological and Epistemic Aspects Adapted from slide © 2004 S. Russell & P. Norvig. Reused with permission. Ontological commitment – what entities, relationships, and facts exist in world and can be reasoned about Epistemic commitment – what agents can know about the world

18 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Syntax of FOL: Basic Elements © 2004 S. Russell & P. Norvig. Reused with permission.

19 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Atomic Sentences (aka Atoms, aka Atomic WFFs) Adapted from slide © 2004 S. Russell & P. Norvig. Reused with permission. Atomic sentence – smallest unit of a logic (aka “atom”, “atomic well-formed formula (atomic WFF)”

20 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Complex Sentences © 2004 S. Russell & P. Norvig. Reused with permission.

21 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Truth in First-Order Logic © 2004 S. Russell & P. Norvig. Reused with permission.

22 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Models for FOL: Example © 2004 S. Russell & P. Norvig. Reused with permission.

23 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Models for FOL: Example © 2004 S. Russell & P. Norvig. Reused with permission.

24 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Models for FOL: Lots! © 2004 S. Russell & P. Norvig. Reused with permission.

25 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Universal Quantification [1]: Definition Based on slide © 2004 S. Russell & P. Norvig. Reused with permission.

26 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Universal Quantification [2]: Common Mistake to Avoid Based on slide © 2004 S. Russell & P. Norvig. Reused with permission.

27 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Existential Quantification [1]: Definition Based on slide © 2004 S. Russell & P. Norvig. Reused with permission.

28 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Existential Quantification [2]: Common Mistake to Avoid Based on slide © 2004 S. Russell & P. Norvig. Reused with permission.

29 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Properties of Quantifiers © 2004 S. Russell & P. Norvig. Reused with permission.

30 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Fun With Sentences Adapted from slides © 2004 S. Russell & P. Norvig. Reused with permission.

31 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Equality © 2004 S. Russell & P. Norvig. Reused with permission.

32 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Interacting with FOL KBs © 2004 S. Russell & P. Norvig. Reused with permission.

33 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Knowledge Base for Wumpus World Based on slide © 2004 S. Russell & P. Norvig. Reused with permission.

34 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Deducing Hidden Properties © 2004 S. Russell & P. Norvig. Reused with permission.

35 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Terminology First-Order Logic (FOL) aka First-Order Predicate Calculus (FOPC)  Components  Semantics (meaning, denotation): objects, functions, relations  Syntax: constants, variables, terms, predicates  Properties of sentences (and sets of sentences, aka knowledge bases)  entailment  provability/derivability  validity: truth in all models (aka tautological truth)  satisfiability: truth in some models  Properties of proof rules  soundness: KB ⊢ i α  KB ⊨ α (can prove only true sentences)  completeness: KB ⊨ α  KB ⊢ i α (can prove all true sentences) Conjunctive Normal Form (CNF) Universal Quantification (“For All”) Existential Quantification (“Exists”)

36 Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Last Class: Overview of Knowledge Representation (KR) and Logic  Representations covered in this course, by ontology and epistemology  Propositional calculus (aka propositional logic)  Syntax and semantics  Relationship to Boolean algebra  Properties Propositional Resolution Elements of Logics – Ontology, Epistemology Today: First-Order Logic (FOL) aka FOPC  Components: syntax, semantics  Sentences: entailment vs. provability/derivability, validity vs. satisfiability  Soundness and completeness  Properties of proof rules  soundness: KB ⊢ i α  KB ⊨ α (can prove only true sentences)  completeness: KB ⊨ α  KB ⊢ i α (can prove all true sentences) Next: First-Order Resolution Summary Points


Download ppt "Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Lecture 12 of 42 William H. Hsu Department."

Similar presentations


Ads by Google