Download presentation
Presentation is loading. Please wait.
Published byDarcy Dean Modified over 9 years ago
1
Thermal Multiscale Modeling of Nanoparticle based Materials Sebastian Volz 1, Jean-Jacques Greffet 1 Denis Rochais 2, Gilberto Domingues 2 and Karl Joulain 3 1 Laboratoire d’Energétique Moléculaire et Macroscopique, Combustion, CNRS - Ecole Centrale Paris - France 2 Laboratoire Microstructrures et Comportements CEA/Le Ripault, Monts, France 3 Laboratoire d’Etudes Thermiques Ecole Nationale Supérieure de Mécaniques et d’Aérotechniques Poitiers Nanoscale Energy and Information Processing Device - Workshop
2
1 – Intro 3- Near field and Clustering 2 – Thermal Conductance Between Two Nanoparticles Content
3
Clustering DECREASE THERMAL CONDUCTIVITY Aerogels : SiO2 amorphous particle 10nm in diameter Porosity 90%, open paths 100nm-1micron 15 mW/mK in ambient and 5 mW/mK at primary vacuum
4
Near Field Al 2 O 3 /Water Q.Z. Xue, Physics Letters, 307, 313, 2003 Colloidal solution Uniformely dispersed Nanoparticles INCREASE THERMAL CONDUCTIVITY
5
T1T1 T2T2 L d wvlength Interaction between 2 Bodies: o Classical Radiation – Far Field L,d >> o Near-Field Radiation L 10 6 W.m -2.K -1 Not done yet for NPs o Conduction: G CD = /d~10 10 W.m -2.K -1 2-Thermal Conductance between two Particles
6
NP1 NP2 vjvj f ij i j STATISTICAL MECHANICS: WORK done by NP1 on NP2 NP1 NP2 j i j ELECTROMAGNETICS: POWER dissipated in NP2 E inc E loc Modeling
7
1 NP = 1 DIPOLE – 1 polarisation, 1 Local Field E L Sphere: j j E inc ELEL r2r2 0 p Near-Field
8
’’ - Glass Optical Phonon Eigen-frequencies d -6 : dipole-dipole interaction - ~V => G ~ R 6 -++- Oscillating Dipoles => Field Emission Phonon – Polariton p Physical Mechanism
9
ATOM = MASS POINT 1800K POSITIONS: Beta-cristobalite lattice cell f ij in SILICA : ‘BKS’ POTENTIAL U(r ij )=q i q j 2 /r ij + A ij exp(-B ij.r ij ) - C ij /r ij 6 COULOMBSHORT RANGE VdW and REPULSIVE 60nm1nm Molecular Dynamics
10
COMPUTE THE NET POWER BETWEEN NP1 and NP2 AT EQUILIBRIUM NP1 NP2 v f ij i j MD Experiment
11
W.K -2 FD THEOREM DISSIPATION FLUX- FORCE MD Output Puech 1986, Barrat 2003
12
Results 1 microW/K NF FF Atom Heat Capacity / Atomic Period x Number of Atoms 3k B x f x N = 3 x 1.38.10 -23 x 3.10 13 x 3000 = 4 10 -6 W/K Near-Field Cluster
13
pp -E0 Lx Lx+E T1T1 T2T2 pp q 1i q 2i q 3i q 4i i SOLVE T i PROBLEM: G ji 10 -20 to 10 -3 W/K => ITERATIONS 3D Near Field=>Thermal Conductivity Increase Unifomely dispersed NPs
14
Convergence Lx T LYLY LZLZ 1 Week Calculation on 1 CPU 1000 NPs
15
Volume Fraction
16
Aerogels Thermal Modeling Heat ConductionNear-Field Radiation: neglected 10%Volume Fraction < Percolation Thermal Pathes Structure
17
Aerogel Skeleton Aggregates with realistic fractal dimension 1.8 Kolb-Botet-Jullien Model (PRL, 51, 1123, 1983) Particles with inital random positions Particles move one by one Make a cluster with neighbours The clusters move as particle (no rotation)
18
Results 2D structure Df=1.43D structure Df=1.77
19
Scattering of Contact Resistance 50 MD experiments with different NPs contact => 50 R values Random choice of R
20
Effective Thermal Conductivitiy ‘Hot Plate’ experiment
21
Results TemperaturesTemperature Gradients 25000 particles, 2D 50 MD experiments with different NPs contact => 50 R values Random choice of R
22
Conclusion Clusters in Air Air Experiments NumericalNear-Field Clusters in Vacuum
23
Conclusion o Modeling/Experiments agree in Aerogels (no NF paths) o Uniform NPs Dist.: early NF percolation => many percolation paths Application: Heat Sink/’Dirty’ Material Coupling clustering and Near-Field Fractal dimension and Thermal Conductivity
24
THANK YOU !
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.