Download presentation
1
Periodic Function Review
Vocabulary: Periodic Function Cycle Period Midline Amplitude = 1 2 (max. – min.) Degrees vs. Radians ⋅ 𝜋 180° Degrees = Radians ⋅ 180° 𝜋 Radians = Degrees
2
𝒚= 𝐬𝐢𝐧 𝒙 𝒚= 𝐜𝐨𝐬 𝒙 𝒚= 𝐭𝐚𝐧 𝒙 𝑦= 𝒂 sin 𝒃(𝑥−𝒉) +𝒌 D: All Reals R: −𝟏≤𝒚≤𝟏
= 𝐬𝐢𝐧 𝒙 𝐜𝐨𝐬 𝒙 D: All Reals R: −𝟏≤𝒚≤𝟏 Period: 𝟐𝝅 D: All Reals R: −𝟏≤𝒚≤𝟏 Period: 𝟐𝝅 D: All Reals but odd values of 𝝅 𝟐 R: All reals Period: 𝝅 𝑦= 𝒂 sin 𝒃(𝑥−𝒉) +𝒌 𝑎 = Amplitude 𝑏= frequency ℎ= Phase shift 𝑘= Vertical shift Reciprocal Functions 𝐜𝐬𝐜 𝜽 = 𝟏 𝐬𝐢𝐧 𝜽 𝐬𝐞𝒄 𝜽 = 𝟏 𝐜𝐨𝐬 𝜽 𝐜𝐨𝐭 𝜽 = 𝟏 tan 𝜽 = 𝐜𝐨𝐬 𝜽 𝐬𝐢𝐧 𝜽
3
Periodic Functions Review
Unit Circle Equation Parts Equations from Graphs Graphing: sin and cos tan, sec, csc 10 20 30 40 50
4
Find the exact value of:
sin 23𝜋 6 Answer
5
sin 23𝜋 6 =− 1 2
6
Find the exact value of:
Answer
7
c𝑜𝑠 − 17𝜋 4 =
8
Find the exact value of:
𝑡𝑎𝑛 𝜋 6 Answer
9
𝑡𝑎𝑛 𝜋 6 = sin 𝜋 6 cos 𝜋 6 = = = 1 2 ⋅ 2 3
10
Find the exact value of:
sec 5𝜋 6 Answer
11
sec 5𝜋 6 = 1 cos 5𝜋 6 = − = 1 − 3 2
12
Find the exact value of:
csc 5𝜋 4 Answer
13
csc 5𝜋 4 = 1 sin 5𝜋 4 = 1 − 2 2 =− 2
14
𝑦=2 sin 3𝑥 +1 Identify the following Amplitude: Phase shift: Period:
Vertical Shift: Range: Answer
15
𝑦=2 sin 3𝑥 +1 Identify the following Amplitude: Phase shift: 2 Period:
Vertical Shift: Range: 2 None or 0 2𝜋 3 Up 1 −1≤𝑦≤3
16
𝑦=−3 sin 2 𝑥− 𝜋 2 −5 Identify the following Amplitude: Phase shift:
Period: Vertical Shift: Range: Answer
17
𝑦=−3 sin 2 𝑥− 𝜋 2 −5 Identify the following Amplitude: Phase shift: 3
Period: Vertical Shift: Range: 3 Right 𝜋 2 𝜋 Down 5 −8≤𝑦≤−2
18
𝑦=2𝜋 cos 𝜋 𝑥+ 𝜋 6 −4 Identify the following Amplitude: Phase shift:
Period: Vertical Shift: Range: Answer
19
𝑦=2𝜋 cos 𝜋 𝑥+ 𝜋 6 −4 Identify the following Amplitude: Phase shift: 2𝜋
Period: Vertical Shift: Range: 2𝜋 Left 𝜋 6 2 Down 4 −4−2𝜋≤𝑦≤−4+2𝜋
20
𝑦= tan 3𝑥 −2 Identify the following Amplitude: Phase shift: Period:
Vertical Shift: Range: Answer
21
𝑦= tan 3𝑥 −2 Identify the following Amplitude: Phase shift: None
Period: Vertical Shift: Range: None 𝜋 3 Down 2 All Real Numbers
22
𝑦= 1 2 tan 𝑥+ 𝜋 4 +3 Identify the following Amplitude: Phase shift:
Period: Vertical Shift: Range: Answer
23
𝑦= 1 2 tan 𝑥+ 𝜋 4 +3 Identify the following Amplitude: Phase shift:
Period: Vertical Shift: Range: Vertical Stretch of 1 2 Left 𝜋 4 𝜋 Up 3 All Reals
24
Write a sine function for the graph.
Answer
25
𝑦=2 sin 3𝑥 −4
26
Write a sine function for the graph.
Answer
27
𝑦=2 sin 𝑥+ 𝜋
28
Write a cosine function for the graph.
Answer
29
𝑦=3 cos 𝑥− 𝜋 3 −1
30
Write a cosine function for the graph.
Answer
31
𝑦=2 cos 𝑥− 3𝜋
32
Write a sine function for the graph.
Answer
33
𝑦=−2 sin 2 𝑥+ 𝜋
34
Graph the following from 0 to 4𝜋: 𝑦= sin 𝑥
Answer
35
𝑦= sin 𝑥
36
Graph the following from 0 to 4𝜋: 𝑦= cos 𝑥
Answer
37
𝑦= cos 𝑥
38
Graph the following from 0 to 4𝜋: 𝑦= 2sin 0.5𝑥
Answer
39
𝑦= 2sin 0.5𝑥
40
Graph the following from 0 to 4𝜋: 𝑦= sin 𝑥− 𝜋 3 +1
Answer
41
𝑦= sin 𝑥− 𝜋
42
Graph the following from 0 to 4𝜋: 𝑦= cos 𝑥+ 𝜋 4 −2
Answer
43
𝑦= cos 𝑥+ 𝜋 4 −2
44
Graph the following from 0 to 4𝜋: 𝑦= tan 𝑥
Answer
45
𝑦= tan 𝑥
46
Graph the following from 0 to 4𝜋: 𝑦= 2tan 0.5𝑥
Answer
47
𝑦= 2tan 0.5𝑥
48
Graph the following from 0 to 4𝜋: 𝑦= sec 𝑥
Answer
49
𝑦= sec 𝑥
50
Graph the following from 0 to 4𝜋: 𝑦= csc 𝑥
Answer
51
𝑦= csc 𝑥
52
Graph the following from 0 to 4𝜋: 𝑦=3 sin 2 𝑥+ 𝜋 3 −1
Answer
53
𝑦=3 sin 2 𝑥+ 𝜋 3 −1
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.