Download presentation
Presentation is loading. Please wait.
Published byAntonia Wells Modified over 9 years ago
1
Hydrogen Atom PHY 361 2008-03-19
2
Outline review of L z operator, eigenfunction, eigenvalues rotational kinetic energy traveling and standing waves spherical coordinates definition Laplacian operator Schrödinger’s equation in spherical coordinates separation of angular variables: L 2 and L z differential equations -spherical harmonics and eigenvalues -vector model of quantum angular momentum radial wavefunctions -effective radial potential – centrifugal `force’ -radial wave functions -hydrogenic orbitals
3
Spherical Coordinates
4
Cylindrical vs. Spherical Coordinates Schr ö dinger Equation: Laplacian: L z 2 / 2I L 2 / 2I
5
Spherical Harmonics L 2 Y lm =l(l+1)Y lm L z Y lm = m Y lm 1 x, y z x 2 +y 2, xy xz, yz 3z 2 -1 x, y xz, yz x 2 +y 2, xy s p d f …
6
Vector model of quantized angular momentum l = 0, 1, 2, … m = -1, -l+1, … l-1, l
7
Radial equation – effective potential
8
Radial hydrogenic wavefunctions
9
Putting radial and angular parts together 2p wave
10
Hydrogenic orbitals http://www.orbitals.com/orb/
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.