Download presentation
Presentation is loading. Please wait.
Published byMagdalene Merritt Modified over 9 years ago
1
CO Rotation Curves High-velocity Rotation, Deep Potential, & Dense Molecular Cores in Spiral Centers Sofue, Y., Koda, J., Nakanishi, H., Onodera, S., Egusa, F., Komugi, S., Kohno, K. 2006 June 26-30, Ishigaki ’ Mapping the Galaxy and Nearby Galaxies ’
2
Summary: Normal galaxies 1. Rotation curves & Mass structures are common (universal). 2. Dynamical mass much (~100x gas) dominates in <100 pc. 3. Nuclear gas is stable to produce/maintain dense gas core. Summary: Normal galaxies 1. Rotation curves & Mass structures are common (universal). 2. Dynamical mass much (~100x gas) dominates in <100 pc. 3. Nuclear gas is stable to produce/maintain dense gas core.
3
I. Introduction
4
Ha RC l Rubin.. 80’,90’ l Mathewson 80’; Persic.. 90’ HI RC l Roberts.. 70’ l Bosma; Rupen; Sancisi,.. 80’ CO RC Sofue, et al... 1995--- (cf: Sofue & Rubin 2001 ARAA) M/L Ratio Kent 80’; Persic 80’; Forbes 90’; Heraudeau 90’; Rubin et al. 90’; Takamiya, Sofue 90’ Rotation Curves and Dark Matter
5
l RC Mass Distri. l Halo Y es Yes l Disk Yes Yes l Bulge Yes Not clear l Core (1-100 pc) No No l BH (sub-pc) Yes Yes RC, Mass/DM distribution? RC, Mass/DM distribution?
6
Optical RCs: sometimes extinction and/or Balmar line absorption V↑ Position along major axis →
7
CO for Central Rotation Curve CO for Central Rotation Curve
8
CO Line Transparent (cf O ptical) Dense in the center (> HI) Low temperature/velocity dispersion High-spatial resolution High-velocity resolution High sensitivity
9
Interferometer CO-line Surveys OVRO BIMA PdB Nobeyama etc. Interferometer CO-line Surveys OVRO BIMA PdB Nobeyama etc.
10
Sakamoto et al. 1999 Sakamoto et al. 1999
11
BIMA SONG
12
II. Virgo CO Survey II. Virgo CO Survey
13
l Collaborators l Sofue, Y. l Koda, J. l Nakanishi, H. l Onodera, S. l Kohno, K l Okumura, S. l Tomita, A. l Egusa, F. l Komugi, S. l et. al. Nobeyama mm Array, 45-m l Future: l SUBARU l ALMA l (Virgo is visible)
14
l スライド 58 スライド 58 Why Virgo? Cepheid distance 16.1 Mpc Variety of spiral types Wealth of data sets Visible from ALMA
15
Observations 1. Nobeyama mm-wave Array AB+C+D Arrays (2-4” at 115 GHz) 2. 12 CO(J=10) line at 115 GHz 3. Normal CO-rich spirals (from Kenney & Young‘s 1988 CO catalog) 4. Observations 1. Nobeyama mm-wave Array AB+C+D Arrays (2-4” at 115 GHz) 2. 12 CO(J=10) line at 115 GHz 3. Normal CO-rich spirals (from Kenney & Young‘s 1988 CO catalog) 4. Long-Term project : 700 h 1999-2003 ( 1992 – 2006: individ. G. ; accumulated data from past)
16
0.5 Mpc 1Mpc 2 Mpc Virgo survey galaxies CO images
17
FITS data available from http://www.ioa.s.u-tokyo.ac.jp/ Sofue et al. 2003a, b Onodera et al. 2004 Nakanishi et al., 2004 Koda et al. 2005
21
III. Rotation Curves III. Rotation Curves
22
HI CO l M51
23
l CO (1x1’) NGC 3079
24
l HI (Irwin & Seaquist 91) l CO (Young et al 93) l CO (NMA) Position-Velocity Diagram a case for N3079
25
l RC –> PV l diagram l simulation CO HI
26
Iteration Method to create RCs (Takamiya, et al. 2000)
28
Methods for RC Envelope tracing; Iteration; Peak tracing
29
Rotation Curves from single dish data
30
High accuracy RC for nearby galaxies
31
Rotation Curves from NMA atural weighting (3-5”)
35
Rotation Curves from NMA (Uniform weighting 1-2”)
36
NGC 4192
37
NGC 4501
38
NGC 4536
39
NGC 3079
40
High accuracy RC
42
Logarithmic RC
43
IV. Mass distributions IV. Mass distributions
44
Fitting by M iyamoto-Nagai Potential l Core l Bulge l Disk l Halo
45
> > Direct calculation of mass distribution from RC
47
Virgo @ higher resolution
48
SMD(mass) Surface mass density SMD(mass) Surface mass density l Core l Bulge l Disk l Halo
49
l Core l Bulge l Disk l Halo (@ higher resolution)
50
Fundamental structures of spiral galaxies Central BH Massive Core Bulge Disk Hallo
51
Massive Core 10 9 M sun in 100 pc SMD ~ a few x10 4 M sun /pc ー2 Center Cusp (DM/Stellar)
52
Fundamental mass structures of spiral galaxies Central BH Massive Core Bulge Disk Hallo
53
Mass structure is universal. Milky Way, M31, N253, …. Virgo galaxies, …. Even LMC, M82(hallo truncated)
54
l LMC = Dark Bulge + Disk + Dark Halo
55
IV. Molecular core in massive core IV. Molecular core in massive core
56
Center SMD(gas) vs SMD(dynamical)
57
SMD (gas) ~ 0.01 SMD(mass) 1000 M sun pc -2 100 M sun pc -2
58
Conversion factor < X co solar X co = 1 x 10 20 H 2 cm -2 /K km/s SMD(H 2 ) = 0.013 SMD (mass) Gas mass << Dynamical mass in 100 pc
59
Central gas distribution: Twin peaks vs Single peak
60
Twin peaks vs Single peak
61
Twin & Single
62
“Single Peaks” 6 Singles vs 1 Twin out of 15 galaxies 10“ (780 pc) NGC 4192 NGC 4212 NGC 4419 NGC 4501 NGC 4535 NGC 4536
63
Uniform weighting maps (1-2” resolution)
64
NGC 4192
65
NGC 4419
66
NGC 4536
67
NGC 3079
68
Single peaks are common. N H2 ~ 10 22-23 H 2 /cm 2 ~ 2x10 3 M sun /pc 2 (5 singles against 1 twin)
69
MW center Molecular core NGC3079 Molecular core NGC3079 l 100 pc l 10 pc
70
If thickness ~10 pc (like MW center) n H 2 ~ 3x10 3 H 2 cm ー 3 Then, Why stay in gas??? If thickness ~10 pc (like MW center) n H 2 ~ 3x10 3 H 2 cm ー 3 Then, Why stay in gas???
71
Toomre’s Q = Σ c /Σ Σ c =κ c /πG Σ = SMD (gas ) κ~O(2Ω) ~ (0.5 My) -1 c ~ 30 km/s Σ c = 5 x 10 3 (V 200 c 30 / R 100 ) M sun pc -2 (Koda et al. 2005)
72
1000 M sun pc -2 100 M sun pc -2
73
Q > 1 or Q >> 1 (Jeans time >> 1/κ ) Gas is stable against gravitational contraction/SF.
74
Single-peak galaxy centers have: 1. Deep potential (High SMD, high rotation) 2. High-density molecular core (High gas SMD) 3. Gas stable (Q>>1, t J >1/κ) Single-peak galaxy centers have: 1. Deep potential (High SMD, high rotation) 2. High-density molecular core (High gas SMD) 3. Gas stable (Q>>1, t J >1/κ)
75
“Twin” ↓ “Single peak” = Stable dense molecular core Enough time for growth ↓ Burst, activity, ….exhaust gas,…. And cycle
76
Conclusion 1. Rotation curves & Mass structures are common (universal). 2. Dynamical mass much (~100x gas) dominates in <100 pc. 3. Nuclear gas is stable to produce/maintain dense gas core. Conclusion 1. Rotation curves & Mass structures are common (universal). 2. Dynamical mass much (~100x gas) dominates in <100 pc. 3. Nuclear gas is stable to produce/maintain dense gas core.
77
Future work: 1. Logarithmic Rotation Curves & mass/stability analyses as above, 100→10→1→0.1 pc 2. ALMA CO Virgo (Nearest cluster with acc. distance) Future work: 1. Logarithmic Rotation Curves & mass/stability analyses as above, 100→10→1→0.1 pc 2. ALMA CO Virgo (Nearest cluster with acc. distance)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.