Download presentation
Presentation is loading. Please wait.
Published byHarvey May Modified over 9 years ago
1
DNA replication Chapter 16
3
Summary of history Griffith Mice & Strep Transformation External DNA taken in by cell
4
Summary of history Hershey-Chase Bacteriophages Supported heredity information was DNA
5
Bacteriophages
6
D:\Chapter_16\A_PowerPoint_Lectures\ 16_Lecture_Presentation\1604Hershey ChaseExpA.html D:\Chapter_16\A_PowerPoint_Lectures\ 16_Lecture_Presentation\1604Hershey ChaseExpA.html
7
Summary of history Franklin X-ray diffraction Double helix Watson-Crick Double helix model
8
Nucleic acid structure DNA deoxyribonucleic acid RNA ribonucleic acid Nucleotides
9
Nucleotide structure 1. 5 carbon sugar (ribose) 2. Phosphate 3. Nitrogenous base
10
Nucleotide structure
11
Nitrogenous base Purines (2 rings) Adenine(A) & Guanine(G) Pyrimidines (1 ring) Cytosine (C), Thymine (T) DNA only Uracil (U) RNA only
13
Phosphodiester bond Links 2 sugars (nucleotides)
15
Nucleic acids 5 ’ Phosphate group (5 ’ C) at one end 3 ’ Hydroxyl group (3 ’ C) at the other end Sequence of bases is expressed in the 5 ’ to 3 ’ direction GTCCAT 5 ’ pGpTpCpCpApT---OH 3 ’
16
Double helix Complementary Sequence on one chain of DNA Determines sequence of other chain 5 ’ -ATTGCAT-3 ’ 3 ’ -TAACGTA-5 ’
18
Double Helix Complementary Purines pair with pyrimidines Diameter of base pairs are the same Adenine (A) forms 2 hydrogen bonds with Thymine (T) Guanine (G) forms 3 hydrogen bonds with cytosine (C)
19
Double Helix Sugar-phosphates are the backbone Complementary Phosphodiester bonds Strands are antiparrellel Bases extend into interior of helix Base-pairs form to join the two strands
21
Fig. 16-7 Hydrogen bond 3 end 5 end 3.4 nm 0.34 nm 3 end 5 end (b) Partial chemical structure(a) Key features of DNA structure 1 nm
23
Duplication DNA unzips-breaks hydrogen bonds New strand forms based on existing strand Old strand is saved Compliment of new strand New DNA-one old strand & one new strand Semiconservative replication
24
Fig. 16-9-3 A T G C TA TA G C (a) Parent molecule AT GC T A T A GC (c) “Daughter” DNA molecules, each consisting of one parental strand and one new strand (b) Separation of strands A T G C TA TA G C A T G C T A T A G C
27
Duplication study Meselson and Stahl Bacteria 14 N and 15 N Semiconservative method.
28
Fig. 16-10 Parent cell First replication Second replication (a) Conservative model (b) Semiconserva- tive model (c) Dispersive model
29
Summary G:\Chapter_16\A_PowerPoint_Lectures\16_Lec ture_Presentation\1605DNAandRNAStructureA.html
30
Duplication Enzymes DNA helicase: Enzyme opens helix starts duplication Separates parental strands Single-strand binding protein: Binds to unpaired DNA After separation Stabilizes DNA
31
Duplication Enzymes DNA polymerases: Help lengthen new strand of DNA Adds new nucleotides strand Synthesis occurs only one direction 5’ to 3’ Adding new nucleotides to the 3’OH
32
Duplication Enzymes Primer: Section of RNA Complementary to the parental DNA Synthesis occurs only one direction 5’ to 3’ DNA primase: Enzyme creates the primer
33
Duplication Enzymes Topoisomerase: Relieves strain of unwinding DNA DNA pol1: Removes primers Replaces with DNA nucleotides DNA ligase: Creates phosphodiester bonds between Okazaki fragments
35
Duplication OriC Origins of replication Starting point in DNA synthesis Replication is bidirectional Proceeds in both directions from origin 5’to 3’direction
36
Duplication E coli (bacteria) Circular DNA One origin Eurkaryotes Multiple origins
38
Duplication Replication bubble: Separation of strands of DNA Replication of DNA Replication fork: Y-shaped region End of replication bubble Site of active replication
39
Duplication
42
Leading strand: DNA continuous 5’ to 3’ replication (towards fork) Template is 3’ to 5’ Lagging strand: DNA duplicated in short segments (away from fork) Okazaki fragments: Short stretches of new DNA-lagging side
43
Duplication D:\Chapter_16\A_PowerPoint_Lectures\16_ Lecture_Presentation\1609DNAReplicatOv erviewA.html
44
Duplication Unzips (helicase, single-strand binding protein, topoisomerase) Primer DNA polymerase (5’to3’) DNA ligase
46
Duplication
48
Fig. 16-14 A C T G G G GC CC C C A A A T T T New strand 5 end Template strand 3 end 5 end 3 end 5 end 3 end Base Sugar Phosphate Nucleoside triphosphate Pyrophosphate DNA polymerase
49
D:\Chapter_16\A_PowerPoint_Lectures\16_Lecture_ Presentation\1615LeadingStrandA.html
50
Fig. 16-13 Topoisomerase Helicase Primase Single-strand binding proteins RNA primer 5 5 53 3 3
51
Fig. 16-15b Origin of replication RNA primer “Sliding clamp” DNA pol III Parental DNA 3 5 5 5 5 5 5 3 3 3
52
Fig. 16-16a Overview Origin of replication Leading strand Lagging strand Overall directions of replication 1 2
53
D:\Chapter_16\A_PowerPoint_Lectures\ 16_Lecture_Presentation\1616Lagging StrandA.html D:\Chapter_16\A_PowerPoint_Lectures\ 16_Lecture_Presentation\1616Lagging StrandA.html
54
Fig. 16-17 Overview Origin of replication Leading strand Lagging strand Overall directions of replication Leading strand Lagging strand Helicase Parental DNA DNA pol III PrimerPrimase DNA ligase DNA pol III DNA pol I Single-strand binding protein 5 3 5 5 5 5 3 3 3 3 1 3 2 4
55
Fig. 16-16 Overview Origin of replication Leading strand Lagging strand Overall directions of replication Template strand RNA primer Okazaki fragment Overall direction of replication 1 2 3 2 1 1 1 1 2 2 5 1 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 3 3
57
Duplication
59
Telomers: Sequences at ends of chromosomes Short nucleotide sequences Repeated 100-1000 times Prevents 5’ end erosion Telomerase: Enzyme that lengthens telomers Usually in germ cells
61
Repairs Mismatched pair: Duplication error Enzymes remove error Nucleotide excision repair: Damaged section removed Nuclease New nucleotides fill gap Complement DNA section not damaged
62
Chromosome packaging Chromatin: Complex composed of DNA and proteins 40% DNA 60% protein Heterochromatin: More compacted chromatin Euchromatin: Loosely packed chromatin
63
Chromosome packaging Double helix Histones: proteins Nucleosome: DNA coiled around 8 histones (10nm) Nucleosomes then coil (30nm) Looped domains attach to chromosome scaffold (300nm) Domains coil form chromosome
67
D:\Chapter_16\A_PowerPoint_Lectures\16_Lecture_Pres entation\1621DNAPacking_A.html
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.