Download presentation
Presentation is loading. Please wait.
Published byLeo Charles Modified over 9 years ago
1
Hampton University Graduate Studies 2003 (e,e'p) and Nuclear Structure Paul Ulmer Old Dominion University
2
Thanks to: W. Boeglin T.W. Donnelly (Nuclear physics course at MIT) J. Gilfoyle R. Gilman R. Niyazov J. Kelly (Adv. Nucl. Phys. 23, 75 (1996)) B. Reitz A.Saha S. Strauch E. Voutier L. Weinstein
3
Outline Introduction Background Experimental Theoretical Nuclear Structure Medium-modified nucleons Cross sections Polarization transfer Studies of the reaction mechanism Few-body nuclei The deuteron 3,4 He
4
A(e,e'p)B Known: e and A Detect: e' and p e e'e' q A p B Infer: p m = q – p = p B
5
e'e' e vv A B + p (e,e'p) - Schematically B = A–1 A–2 + N Etc. i.e. bound
6
Kinematics e e'e' xx pA–1pA–1 pq p (,q)(,q) In ERL e : Q 2 – q q = q 2 – 2 = 4ee' sin 2 /2 Missing momentum: p m = q – p = p A–1 Missing mass: m = –T p – T A–1 scattering plane “out-of-plane” angle reaction plane
7
Some (Very Few) Experimental Details …
8
“accidental” (uncorrelated) e e e e'e' e'e' p e'e' p “real” (correlated) Detected
9
# events relative time: t e – t p rr aa
10
Accidentals Rate = R e R p /DF I 2 /DF Reals Rate = R eep I S:N = Reals/Accidentals DF /( I) Compromise: Optimize S:N and R eep
11
Extracting the cross section NeNe e e'e'N N (cm -2 ) ( e, p e ) ( p, p p ) p
12
Some Theory …
13
Cross Section for A(e,e'p)B in OPEA where Current-Current Interaction “A-1”
14
Square of Matrix Element WW
15
Electron tensor Nuclear tensor Mott cross section Cross Section in terms of Tensors
16
3 indep. momenta: Q, P i, P (P A–1 = Q + P i – P) target nucleus ejectile 6 indep. scalars: P i 2, P 2, Q 2, QP i,QP, PP i = M A 2 = m 2 Consider Unpolarized Case Lorentz Vectors/Scalars
17
Nuclear Response Tensor X i are the response functions
18
Impose Current Conservation Get 6 equations in 10 unknowns 4 independent response functions
19
Putting it all together …
20
The Response Functions Use spherical basis with z-axis along q: Nuclear 4-current
21
Q P i = M A P P i = E M A Q P = E – q p cos pq In lab: Can choose: Q 2, , m, p m Note: no x dependence in response functions Response functions depend on scalar quantities
22
Including electron and recoil proton polarizations
23
Extracting Response Functions For instance: R LT and A (=A LT )
24
Plane Wave Impulse Approximation (PWIA) e e'e' q p p0p0 A A–1 A-1 spectator p0p0 q – p = p A-1 = p m = – p 0
25
nuclear spectral function In nonrelativistic PWIA: For bound state of recoil system: proton momentum distribution The Spectral Function e-p cross section
26
The Spectral Function, cont’d. Note: S is not an observable!
27
Elastic Scattering from a Proton at Rest p (,q)(,q) (m,0)(m,0) p ( +m, q) Proton is on-shell ( + m) 2 q 2 = m 2 2 + 2m + m 2 q 2 = m 2 = Q 2 2m Before After
28
Scattering from a Proton, cont’d. Vertex fcn ++ ++ n p p p p p p 00 p p point proton structure/anomalous moment +++
29
Scattering from a Proton, cont’d. Dirac FFPauli FF Sachs FF’s Vertex fcn: G E and G M are the Fourier transforms of the charge and magnetization densities in the Breit frame.
30
r k k'k' Amplitude at q: Phase difference: Form Factor
31
Cross section for ep elastic However, (e,e'p) on a nucleus involves scattering from moving protons, i.e. Fermi motion.
32
Elastic Scattering from a Moving Proton p (,q)(,q) (E,p)(E,p) ( + E) 2 – (q+p) 2 = m 2 2 + 2E + E 2 q 2 2pq p 2 = m 2 Q 2 = 2E 2pq (E/m) = (Q 2 2m) + pq m Before p ( +E, q+p) After
33
Cross section for ep elastic scattering off moving protons Follow same procedure as for unpolarized (e,e'p) from nucleus We get same form for cross section, with 4 response functions …
34
Response functions for ep elastic scattering off moving protons
35
Quasielastic Scattering For E m: (Q 2 2m) + pq m Expect peak at: (Q 2 2m) Broadened by Fermi motion: pq m If we “quasielastically” scatter from nucleons within nucleus:
36
Elastic Quasielastic N*N* Deep Inelastic Nucleus Elastic N*N* Deep Inelastic Proton Electron Scattering at Fixed Q 2
37
6 Li 181 Ta 89 Y 58 Ni 40 Ca 24 Mg 12 C 118 Sn 208 Pb R.R. Whitney et al., Phys. Rev. C 9, 2230 (1974). Quasielastic Electron Scattering
38
Data: P. Barreau et al., Nucl. Phys. A402, 515 (1983). y-scaling analysis: J.M. Finn, R.W. Lourie and B.H. Cottman, Phys. Rev. C 29, 2230 (1984).
39
Nuclear Structure
40
U. Amaldi, Jr. et al., Phys. Rev. Lett. 13, 341 (1964). First, a bit of history: The first (e,e'p) measurement Frascati Synchrotron, Italy 12 C(e,e'p) 27 Al(e,e'p)
41
(e,e'p) advantages over (p,2p) Electron interaction relatively weak: OPEA is reasonably accurate. Nucleus is very transparent to electrons: Can probe deeply bound orbits. However: ejected proton is strongly interacting. The “cleanness” of the electron probe is somewhat sacrificed. FSI must be taken into account.
42
Recall, in nonrelativistic PWIA: where q – p = p m = – p 0 FSI destroys simple connection between the measured p m and the proton initial momentum (not an observable).
43
e e'e' q p p0p0 FSI A–1A–1 A p0'p0' Final State Interactions (FSI)
44
Treat outgoing proton distorted waves in presence of potential produced by residual nucleus (optical potential). Distorted Wave Impulse Approximation (DWIA) “Distorted” spectral function
45
Optical potential is constrained by proton elastic scattering data. Problems with this approach: Residual nucleus contains hole state, unlike the target in p+A scattering. Proton scattering data is surface dominated, whereas ejected protons in (e,e'p) are produced within entire nuclear volume.
46
J.W.A. den Herder, et al., Phys. Lett. B 184, 11 (1987). 100 MeV data is significantly overestimated by DWIA near 2 nd maximum. NIKHEF-K Amsterdam
47
J.W.A. den Herder, et al., Phys. Lett. B 184, 11 (1987). At p m 160 MeV/c, wf is probed in nuclear interior.
48
J.W.A. den Herder, et al., Phys. Lett. B 184, 11 (1987). Adjusting optical potential renders good agreement while maintaining agreement with p+A elastic.
49
J. Mougey et al., Nucl. Phys. A262, 461 (1976). Saclay Linac, France 12 C(e,e'p) 11 B
50
J. Mougey et al., Nucl. Phys. A262, 461 (1976). Saclay Linac, France 12 C(e,e'p) 11 B p-shell l=1 s-shell l=0
51
G. van der Steenhoven et al., Nucl. Phys. A484, 445 (1988). NIKHEF-K Amsterdam 12 C(e,e'p) 11 B
52
G. van der Steenhoven et al., Nucl. Phys. A484, 445 (1988). NIKHEF-K Amsterdam 12 C(e,e'p) 11 B
53
G. van der Steenhoven, et al., Nucl. Phys. A480, 547 (1988). NIKHEF-K Amsterdam 12 C(e,e'p) 11 B DWIA calculations fit data reasonably well. Missing strength observed however.
54
L.B. Weinstein et al., Phys. Rev. Lett. 64, 1646 (1990). 12 C(e,e'p) Bates Linear Accelerator
55
K.I. Blomqvist et al., Phys. Lett. B 344, 85 (1995). MAMI Mainz, Germany
56
K.I. Blomqvist et al., Phys. Lett. B 344, 85 (1995). MAMI Mainz, Germany Factorization violated. DWIA calculations underpredict at high p m. Neglected MEC’s & relativistic effects. Offshell effects uncertain at high p m.
57
I. Bobeldijk et al., Phys. Rev. Lett. 73, 2684 (1994). AmPS NIKHEF-K Amsterdam 208 Pb(e,e'p)
58
I. Bobeldijk et al., Phys. Rev. Lett. 73, 2684 (1994). 208 Pb(e,e'p) AmPS NIKHEF-K Amsterdam Long-range correlations important. SRC and TC less so, but expected to grow with m.
59
Some of the lessons learned: (e,e'p) sensitive probe of single-particle orbits. Proton distortions (FSI) must be accounted for to reproduce shape of spectral function. Energy dependence of FSI breaks factorization. Missing strength in valence orbits, even after accounting for FSI At high P m significant discrepancies found relative to calculations.
60
Where does the “missing” strength go? One possibility: Detected recoils populates high m
61
C. Ciofi degli Atti, E. Pace and G. Salmè, Phys. Lett. 141B, 14 (1984). n(k) total m 12.25 MeV 2-body m 300 MeV m 50 MeV 3 He SRC dominate high k (=p m ) and are related to large values of m.
62
C. Ciofi degli Atti, E. Pace and G. Salmè, Phys. Lett. 141B, 14 (1984). d Nucl. Matter 3 He 4 He Similar shapes for few-body nuclei and nuclear matter at high k (=p m ).
63
Medium-Modified Nucleons
64
Searching for Medium Effects on the Nucleon … In parallel kinematics: Can write ep elastic cross section as:
65
PWIA Relate R T /R L to in-medium proton FF’s This relies on (unrealistic) model assumptions! Nonetheless …
66
J.E. Ducret et al., Phys. Rev. C 49, 1783 (1994). 2 H(e,e'p)n 6 Li(e,e'p) DWIA NIKHEF-K Amsterdam J.B.J.M. Lanen et al., Phys. Rev. Lett. 64, 2250 (1990).
67
12 C(e,e'p) and 12 C(e,e')
68
D. Dutta et al., Phys. Rev. C 61, 061602 (2000). JLab Hall C
69
However, large FSI effects can mimic this behavior …
70
Dirac PWIA Dirac DWIA Schrödinger LDA FSI calculations for 16 O 1p 3/2 Data for 12 C 1p 3/2
71
Another, less model-dependent, method … Polarization Transfer
72
Proton Polarization and Form Factors * R. Arnold, C. Carlson and F. Gross, Phys. Rev. C 23, 363 (1981). in nucleus model assumptions *
73
spectrometer + FPP 1 H and ( 2 H or 4 He) spectrometer Polarization Transfer in Hall A
74
Measuring the Proton Polarization: FPP
75
Density Dependent Form Factors For (e,e'p) D.H. Lu,, A.W. Thomas, K. Tsushima, A.G. Williams, K. Saito, Phys. Lett. B 417, 217 (1998). Quark-Meson Coupling Model (QMC):
76
D.H. Lu, K. Tsushima, A.W. Thomas, A.G. Williams and K. Saito, Phys. Lett. B417, 217 (1998) and Phys. Rev. C 60, 068201 (1999). Quark-Meson Coupling Model 4 He
77
Calculations by Arenhövel JLab RDWIA calculations by Udias et al. Preliminary
78
Induced Polarization – 4 He JLab E93-049 P y =0 in PWIA: test of FSI Preliminary
79
PWIADWIA DWIA+spinor distortion DWIA+QMC S. Malov et al., Phys. Rev. C 62, 057302 (2000).
80
Studies of the Reaction Mechanism
81
Correlations MEC’s IC’s Correlations and Interaction Currents
82
Off-shell Effects Vertex function is not well defined. The “Gordon identity” leads to alternative forms, equivalent only when proton is on-shell. e e'e' q p p0p0 A A–1 initial proton is bound
83
D. Dutta et al., Phys. Rev. C 61, 061602 (2000).P.E. Ulmer et al., Phys. Rev. Lett. 59, 2259 (1987). 12 C(e,e'p) L/T Separations Q 2 =0.15 GeV 2 Q 2 =0.64 GeV 2 Bates Linear AcceleratorJLab Hall C
84
D. Dutta et al., Phys. Rev. C 61, 061602 (2000). Excess transverse strength at high m. Persists, though perhaps declines, at higher Q 2. JLab Hall C
85
J.B.J.M. Lanen et al., Phys. Rev. Lett. 64, 2250 (1990). 6 Li(e,e'p) T/L Ratio DWIA (dashed) fails to describe overall strength. Scaling transverse amplitude in DWIA (solid) gives good agreement deduce scale factor, . NIKHEF-K Amsterdam
86
J.B.J.M. Lanen et al., Phys. Rev. Lett. 64, 2250 (1990). DWIA 6 Li(e,e'p) T/L Ratio NIKHEF-K Amsterdam
87
The L/T separations suggest Additional transverse reaction mechanism above 2-nucleon emission threshold. MEC’s primarily transverse in character. Suggestive of two-body current. Reminiscent of …
88
J.M. Finn, R.W. Lourie and B.H. Cottman, Phys. Rev. C 29, 2230 (1984). T/L anomaly in inclusive (e,e'):
89
R.W. Lourie et al., Phys. Rev. Lett. 56, 2364 (1986). 12 C(e,e'p) in “Dip Region” Data from: Bates Linear Accelerator Bates Linear Accelerator
90
L.B. Weinstein et al., Phys. Rev. Lett. 64, 1646 (1990). H. Baghaei et al., Phys. Rev. C 39, 177 (1989). 12 C(e,e'p) Quasielastic“Delta” Q 2 =0.30 Q 2 =0.48 Q 2 =0.58 Between dip and Peak of Bates Linear Accelerator
91
Figure adapted from J.H. Morrison et al., Phys. Rev. C 59, 221 (1999). Missing Energy (MeV) 0 100 200300 12 C(e,e'p) q=990 MeV/c, =475 MeV For 60< m <100 MeV, continuum cross section increases strongly with . Large continuum strength continues up to 300 MeV. Bates Linear Accelerator
92
Figure adapted from J.H. Morrison et al., Phys. Rev. C 59, 221 (1999). Missing Energy (MeV) 0 100 20050150 12 C(e,e'p) q=970 MeV/c, =330 MeV Continuum strength increases strongly with . Continuum cross section is smaller at high m. Bates Linear Accelerator
93
J.H. Morrison et al., Phys. Rev. C 59, 221 (1999). 12 C(e,e'p) For < QE, spectroscopic factors consistent with naïve expectations. Bates Linear Accelerator
94
C.M. Spaltro et al., Phys. Rev. C 48, 2385 (1993). Circles (solid) – NIKHEF-KCrosses (dashed) - Saclay Large discrepancy for 1p 3/2. Relativistic effects predicted to be small here. Two-body currents responsible?? 16 O(e,e'p)
95
J. Gao et al., Phys. Rev. Lett. 84, 3265 (2000). 16 O(e,e'p) Q 2 =0.8 GeV 2 Quasielastic Relativistic DWIA gives good agreement with data. JLab Hall A
96
N. Liyanage et al., Phys. Rev. Lett. 86, 5670 (2001). Two-body calculations of Ryckebusch et al., give flat distribution, as seen in the data, but underpredict by a factor of two. 16 O(e,e'p) Q 2 =0.8 GeV 2 Quasielastic JLab Hall A
97
At high energies, R LT interference response function sensitive to relativistic effects. For example, spinor distortion …
98
Spinor Distortions N.R. reduction S+V Mean field S+V relatively small Dirac spinor S–V affects lower components S–V large
99
J. Gao et al., Phys. Rev. Lett. 84, 3265 (2000). 16 O(e,e'p) Q 2 =0.8 GeV 2 Quasielastic Udias full Udias BS SD only Udias scatt. state SD only Udias - no SD Kelly 1p 1/2 1p 3/2 Sensitive to “spinor distortions” JLab Hall A
100
Few-body Nuclei …
101
The Deuteron
102
Short-distance Structure Low p m p n High p m p n For large overlap, nucleons may lose individual identities: Quark/gluon d.o.f.?
103
M. Bernheim et al., Nucl. Phys. A365, 349 (1981). Saclay Linac, France
104
P.E. Ulmer et al., Phys. Rev. Lett. 89, 062301 (2002). p m (MeV/c) Arenhövel DWBA Arenhövel Full PWBA Jeschonnek or Arenhövel JLab Hall A Large FSI/non- nucleonic effects. Problem at p m =0.
105
D. Jordan et al., Phys. Rev. Lett. 76, 1579 (1996).
106
K.I. Blomqvist et al., Phys. Lett. B 424, 33 (1998). MAMI Mainz, Germany Ducret et al. Bernheim et al. Jordan et al. Blomqvist et al. data cover kinematics beyond . Also neutron exchange diagram important.
107
K.I. Blomqvist et al., Phys. Lett. B 424, 33 (1998). Calculations: H. Arenhövel FSI FSI+MEC+IC
108
Bonn Electron Synchrotron, Germany 2 H(e,e'p) Q 2 =0.23 GeV 2 near Calculations: Leidemann and Arenhövel H. Breuker et al., Nucl. Phys. A455, 641 (1986). PWBA+FSI PWBA+FSI+MEC+IC PWBA+FSI+MEC clearly important
109
q p n f Final State n f p Proton hit (high p m ) q n p Final State n f p f Neutron hit (low p m ) e q f p n f n p Proton spectator
110
p m (MeV/c) 0100200400500300600 P.E. Ulmer et al., Phys. Rev. Lett. 89, 062301 (2002). Q 2 =0.67 GeV 2 Quasielastic Large FSI effects. Also, substantial non-nucleonic effects. JLab Hall A
111
Final State Interactions Can be LARGE p q f p'p' f p p'p' actual inferred
112
G. van der Steenhoven, Few-Body Syst. 17, 79 (1994). Wilbois/Arenhövel de Forest Hummel/Tjon Arenhövel/Fabian Mosconi/Ricci NR
113
What do all these data and curves suggest? Relativistic effects substantial in A (and R LT ). de Forest “CC1” nucleon cross section gives same qualitative features as more complete calculations here, relativity more related to nucleonic current, as opposed to deuteron structure.
114
I. Passchier et al., Phys. Rev. Lett. 88, 102302 (2002). D-state important AmPS NIKHEF-K Amsterdam
115
Lots more d(e,e'p) data on the way!
116
Perpendicular: R LT Q 2 : 0.80, 2.10, 3.50 (GeV/c) 2 x=1: p m from 0 to 0.5 GeV/c Parallel/Anti-parallel Q 2 : 2.10 (GeV/c) 2 vary x: p m from 0 to 0.5 GeV/c Neutron angular distribution Q 2 : 0.80, 2.10, 3.50 (GeV/c) 2 2 H(e,e'p)n E01-020 Hall A
119
2 H(e,e'p)n with JLab 12 GeV upgrade
120
Preliminary Hall B E5 Data – 2 H(e,e'p) Hall B data covers large range of Q 2 and excitation as well as coverage to separate R LT, R LT ' and R TT.
121
3,4 He
122
C. Marchand et al., Phys. Rev. Lett. 60, 1703 (1988). 3 He(e,e'p) Calculations by Laget: dashed=PWIA dot-dashed=DWIA solid=DWIA+MEC Saclay Linear Accelerator Arrows indicate expected position for correlated pair.
123
C. Marchand et al., Phys. Rev. Lett. 60, 1703 (1988). 3 He(e,e'p)d 3 He(e,e'p)np 3BBU similar to d np
124
JLab Hall A Large effects from FSI and non-nucleonic currents. Highest p m shows excess strength.
125
A LT JLab Hall A General features reproduced but not at correct values of p m.
126
The most direct way to look for correlated nucleons? Detect both of them JLab Hall B
127
3 He(e,e'pp)n Hall B 2 GeV P N >250 MeV/c 4 GeV P N >250 MeV/c fast pn leading p PRELIMINARY 00.51 T p2 / 00.51 T p2 / 0 0.5 1 T p1 / 0 0.5 1 T p1 / -0.5 0 10.5 cos(2 fast nucleon angle) -0.5 0 10.5 cos(2 fast nucleon angle)
128
Hall B 3 He(e,e'pp)n 2 GeV p perp < 300 MeV/c PRELIMINARY cos( nq ) cos( pq ) Isotropic fast pairs pair not involved in reaction.
129
Hall B 3 He(e,e'pp)n Pair momentum along q [GeV/c] Small momentum along q pair not involved in reaction. Little Q 2 or isospin dependence. p perp < 300 MeV/c PRELIMINARY 2 GeV has acceptance corrections
130
Before p n p After n p p Direct evidence of NN correlations
131
A. Magnon et al., Phys. Lett. B 222, 352 (1989). Saclay 4 He(e,e'p) 3 H Argonne+Mod 7 Urbana+Mod 7 Data and calculations “corrected” for MEC+IC (Laget). Longitudinal overpredicted. p m =90 MeV/c
132
J.E. Ducret et al., Nucl. Phys. A556, 373 (1993). Saclay 4 He(e,e'p) 3 H Calculations predict q dependence.
133
J.E. Ducret et al., Nucl. Phys. A556, 373 (1993). 4 He(e,e'p) 3 H Again, calculations predict q dependence.
134
J.J. van Leeuwe et al., Phys. Rev. Lett. 80, 2543 (1998). PWIA tree+one-loop tree PWIA +FSI +2-body PWIA +FSI +MEC/2B +MEC/3B Laget Schiavilla Nagorny Minimum filled in by FSI and 2&3-body currents. 4 He(e,e'p) 3 H AmPS NIKHEF-K Amsterdam
135
FSI: dependence on kinematics p q f p'p' f p p'p' actual inferred Large FSI q p f p p'p' f p'p' Small FSI
136
4 He(e,e'p) 3 H JLab Hall A Experiment E97-111, J. Mitchell, B. Reitz, J. Templon, cospokesmen It looks like the minimum is filled in here as well.
137
Summary (e,e'p) sensitive to single-particle aspects of nucleus, but … More complicated physics is clearly important. Spectroscopic factors reduced compared to naïve shell model (including FSI corrections). Missing strength at least partly due to interaction currents: direct interaction with with exchanged mesons or interaction with correlated pairs (spreads strength over m ).
138
Summary cont’d. After several decades of experimental and theoretical effort, there are still unanswered questions. What is the nature of the interaction of the virtual photon with the “nucleon”: medium and offshell effects? Handling FSI and other reaction currents still problematic, though realistic calculations are now available for the lighter systems. High energy program is underway, pushing to shorter distance scales, emphasizing relativistic effects, …
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.