Presentation is loading. Please wait.

Presentation is loading. Please wait.

I can graph a rational function.

Similar presentations


Presentation on theme: "I can graph a rational function."β€” Presentation transcript:

1 I can graph a rational function.
8-3 Rational Functions Unit Objectives: Graph a rational function Simplify rational expressions. Solve a rational functions Apply rational functions to real-world problems Today’s Objective: I can graph a rational function.

2 𝑓 π‘₯ = 𝑃(π‘₯) 𝑄(π‘₯) Rational Function: 𝑃 π‘₯ and 𝑄 π‘₯ are polynomials 𝑦= π‘₯ 2 π‘₯ 2 +1 𝑦= π‘₯+2 π‘₯ 2 βˆ’4 Hole Asymptote Continuous Graph: No breaks in graph Discontinuous Graph: Breaks in graph

3 Where the Denominator = zero Domain:
Discontinuities: Where the Denominator = zero Domain: All real numbers (ℝ) except discontinuities Holes: Removable Same factor in numerator and denominator Vertical Asymptotes: Non-removable 𝑦= π‘₯+2 (π‘₯+2)(π‘₯βˆ’3) 𝑦= π‘₯+2 π‘₯ 2 βˆ’π‘₯βˆ’6 = 1 (π‘₯βˆ’3) 𝑦= π‘₯+1 (π‘₯+1)(π‘₯+3) = 1 (π‘₯+3) Discontinuity: π‘₯=βˆ’1 or π‘₯=βˆ’3 π‘₯=βˆ’2 or π‘₯=3 Domain: All reals but π‘₯β‰ βˆ’2, 3 All reals but π‘₯β‰ βˆ’1,βˆ’3 1 2 βˆ’ 1 5 Holes: 𝑦= π‘₯=βˆ’2 𝑦= π‘₯=βˆ’1 V. Asymp: π‘₯=βˆ’3 π‘₯=3

4 Horizontal Asymptotes: π‘Žπ‘₯ π‘š 𝑏π‘₯ 𝑛
π‘Žπ‘₯ π‘š 𝑏π‘₯ 𝑛 Leading term of numerator and denominator (standard form) π‘š<𝑛 π‘š>𝑛 π‘š=𝑛 No horizontal asymptote 𝑦=0 𝑦= π‘Ž 𝑏 𝑦= π‘₯+1 π‘₯ 2 βˆ’4 𝑦= π‘₯ 3 +6 π‘₯+3 𝑦= 3 π‘₯ π‘₯ 2 +5 1 1 ? 2 < 2 ? 2 = 3 ? 1 > 𝑦= 3 1 𝑦=0 No horizontal asymptote =3 Range: All real numbers (ℝ) except horizontal asymptote & holes

5 Find and graph asymptotes & holes
Find and graph additional points β†’ each side of v. asymptote Sketch graph Discontinuities: π‘₯=3 Hole: None V. Asymp.: π‘₯=3 Additional Points x y H. Asymp.: 2(0) 0βˆ’3 =0 ℝ except π‘₯β‰ 3 2 1 Domain: Range: 𝑦= =2 ℝ except 𝑦≠2 2(4) 4βˆ’3 4 =8

6 1 Graph: 𝑦= π‘₯βˆ’1 π‘₯ 2 βˆ’1 = π‘₯βˆ’1 (π‘₯βˆ’1)(π‘₯+1) Discontinuities: π‘₯=1 π‘₯=βˆ’1
= π‘₯βˆ’ (π‘₯βˆ’1)(π‘₯+1) Discontinuities: Additional Points x y π‘₯=1 π‘₯=βˆ’1 Hole: π‘₯=1 1 βˆ’2 +1 βˆ’2 1 2 =βˆ’1 𝑦= V. Asymp.: 1 0+1 =1 π‘₯=βˆ’1 H. Asymp.: Domain: Range: ℝ except π‘₯β‰ Β±1 ℝ except 𝑦≠0, 0.5 𝑦=

7 p.521: 13-31 odd = π‘₯(π‘₯+3) (π‘₯+2)(π‘₯+3) Graph: 𝑦= π‘₯ 2 +3π‘₯ π‘₯ 2 +5π‘₯+6
= π‘₯(π‘₯+3) (π‘₯+2)(π‘₯+3) Discontinuities: Additional Points x y π‘₯=βˆ’2 π‘₯=βˆ’3 Hole: π‘₯=βˆ’3 βˆ’4 βˆ’4+2 βˆ’4 =2 𝑦= 3 V. Asymp.: =0 π‘₯=βˆ’2 H. Asymp.: p.521: odd Domain: Range: ℝ except π‘₯β‰ βˆ’2, βˆ’3 1 1 𝑦= =1 ℝ except 𝑦≠0, 3


Download ppt "I can graph a rational function."

Similar presentations


Ads by Google