Download presentation
Presentation is loading. Please wait.
Published byAnne Gray Modified over 9 years ago
1
Introduction Paul J. Hurtado http://www.pauljhurtado.com/ Mathematical Biosciences Institute (MBI), The Ohio State University 19 May 2014 (Monday a.m.)
2
Workshop Overview Why do we do statistics? Estimation vs Uncertainty Quantification ODEs vs “Classical” Models Other useful topics… I.Fundamental Concepts: Review/Overview Linear models and e x Parameter Space & Bifurcations Probability & Statistics Optimization Visualization II.Computer Lab Resources: (URL) Scripts vs. console (R vs Matlab) Simulating ODE Solutions Graphics/Plotting Random numbers Manipulating Objects … III.Summary
3
Why do statistics? Scientific vs. Mathematical Inference Estimation & Uncertainty Quantification Statistics with dynamic models? Challenges of statistics with ODEs?
4
Additional Topics? Markov Chain Monte Carlo (MCMC) Bayesian Methods Filtering (Kalman, Particle, etc) Functional Data Analysis SDEs, PDEs, SPDEs… Decision Trees, Neural Networks, etc. etc!
5
Quick Review Linear Models Probability Parameter Space Bifurcations Visualization
6
Linear Equations
8
X Y
9
X Y
11
X Y Y = m X + b
12
X Y
13
X Y
14
X Y Y = m X + b + ε
15
X Y Y = m X + b
16
Why linear algebra? Curves: intuition based on lines. Models are rarely 1-dimensional! y 1 = ax 1 – bx 3 y = m x vs y 2 = – cx 1 – dx 2 + bx 3 y 3 = – bx 3 + ax 1 X Y
17
Matrices & Vectors… … useful notation. For example, y = Ax vs … essential tools for math/computing. or
18
Computers :: Matrix
19
Matrix Applications Two common ways matrices are used: 1.Storage variables: data, etc. * Easier, faster computations! 2. Maps/Transformations
20
Matrix transformations Pick a random* matrix A. It can be written: A = QDQ -1 where D=diag( λ 1, …, λ n ) are eigenvalues, & the columns of Q are their eigenvectors. y = A x Q: How does A convert x to y?
21
Matrix transformations Example: y 1 ’ = A 11 y1+A 12 y 2 +…+A 1n y n y 2 ’ = A 21 y1+A 22 y 2 +…+A 2n y n... y n ’ = A n1 y1+A n2 y 2 +…+A nn y n
22
Matrix transformations Example: y 1 ’ A 11 A 12 … A 1n y n y 2 ’ A 21 A 22 … A 2n y n... y n ’ A n1 A n2 … A nn y n = A
23
Matrix transformations Example: y 1 ’ λ 1 0 … 0 y n y 2 ’ 0 λ 2 … 0 y n... y n ’ 0 0 … λ n y n = QQ -1 A = Q D Q -1
24
Matrix transformations Example: y 1 ’ λ 1 0 … 0 y n y 2 ’ 0 λ 2 … 0 y n... y n ’ 0 0 … λ n y n = Q -1 QQ -1
25
Matrix transformations Example: Y 1 ’ λ 1 0 … 0 Y 1 Y 2 ’ 0 λ 2 … 0 Y 2... Y n ’ 0 0 … λ n Y n =
26
Matrix transformations Example: Y 1 ’ = λ 1 Y 1 Y 2 ’ = λ 2 Y 2... Y n ’ = λ n Y n
27
Matrix transformations Example: Y 1 (t) = Y 1 (0)exp(λ 1 t) Y 2 (t) = Y 2 (0)exp(λ 2 t)... Y n (t) = Y n (0)exp(λ n t)
28
Matrix transformations Example: Y 1 (t) Y 1 (0)exp(λ 1 t) Y 2 (t) Y 2 (0)exp(λ 2 t)... Y n (t) Y n (0)exp(λ n t) =
29
Matrix transformations Example: y 1 (t) Y 1 (0)exp(λ 1 t) y 2 (t) Y 2 (0)exp(λ 2 t)... y n (t) Y n (0)exp(λ n t) = Q
30
Matrix transformations Example: y 1 (t) Y 1 (0)exp(λ 1 t) y 2 (t) Y 2 (0)exp(λ 2 t)... y n (t) Y n (0)exp(λ n t) = q 1 … q n
31
Matrix transformations Example: y 1 (t) y 2 (t) … y n (t) = Y 1 (0)exp(λ 1 t) q 1 + … + Y n (0)exp(λ n t) q n
32
Matrix transformations Summary #1: Eigenpairs tells us about the geometry of matrix transformations
33
Matrices & Models Linear Model in matrix form: Y i = β 0 + β 1 X i + ε i where ε i ~ N(0,σ 2 )
34
Matrices & Models Linear Model in matrix form: Y 1 = β 0 + β 1 X 1 + ε 1 Y 2 = β 0 + β 1 X 2 + ε 2 … Y n = β 0 + β 1 X n + ε n
35
Matrices & Models Linear Model in matrix form: Y 1 β 0 + β 1 X 1 ε 1 Y 2 β 0 + β 1 X 2 ε 2 … Y n β 0 + β 1 X n ε n = +
36
Matrices & Models Linear Model in matrix form: Y 1 1 X 1 ε 1 Y 2 1 X 2 ε 2 … Y n 1 X n ε n = + β0β0 β1β1 Unknown!
37
Matrices & Models Linear Model in matrix form: Goal: Minimize ε’ε = (Y-Xβ)’(Y-Xβ). This is the same as solving (X’Y) = (X’X)β. Y = X β + ε Unknown!
38
Summary Matrices are pervasive in scientific computing, statistics. - Computing with vectors/matrices is faster, simpler than iteration/loops. - Intuition improves use, interpretation. Linear algebra is a cornerstone of stats!
39
X Y Y = m X + b + ε
40
Probability Basics
41
Distributions Density CDF Continuous Random Variables: Ex: Normal, Gamma, etc.
42
Distributions Mass CDF Discrete Random Variables: Ex: Poisson, Binomial, etc.
43
Distributions Mass+Density CDF 20% 80% 20% Mixed Distributions: Zero-inflated Normal, etc.
44
Sampling CDFs Let r~Unif(0,1), CDF F(x) with inverse F -1. Then F -1 (r) ~ F(x). Ex:.67 5.1.12 0.0.85 5.9
45
Distributions in R R has many built-in densities and CDFs! Density CDF Quantile Sample dnorm pnorm qnorm rnorm dpois ppois qpois rpois … beta, binomial, Cauchy, χ 2, exponential, F, gamma, geometric, hypergeometric, log- normal, multinomial, negative binomial, Student's t, uniform distribution, Weibull, etc.
46
Multivariate If Yi all independent, identically distributed Y i ~ f(y|θ) then their joint distribution is the product Y = (Y 1, …,Y n ) ~ f(y i |θ).
47
Liklihood The likelihood of data X=(X 1,…,X n ) under parameter θ is given by Lik(θ|X) = f(X i |θ). The log-likelihood of data X=(X 1,…,X n ) under parameter θ is given by LL(θ|X) = log(f(X i |θ)).
48
Parameter Space Bifurcations
49
Consumption Rate (a) Saturation Parameter (k)
50
Optimization
51
Visualization
52
GDP R 2 = … p = …
55
Questions?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.