Download presentation
Presentation is loading. Please wait.
Published byNickolas Farmer Modified over 9 years ago
1
MSU ROV Team Final Review Senior Design 2 November 19, 2013
2
Team Members Justin Gilmer Computer Engineering Arduino Programming Circuit Design Web Design Robbie Lundine Computer Engineering Arduino Programming Circuit Design Web Design Mark McConnell Electrical Engineering Team Leader Pic Programming Circuit Design Mechanical Design / Construction Chance Sistrunk Electrical Engineering Pic Programming Circuit Design Mechanical Design / Construction
3
Faculty Advisor Jane Moorhead Professor
4
Overview Competition Overview Technical Constraints PCB Manipulator Arm Packaging
5
Competition Overview Course layout Operators Station BIA Thermal Vent Floating Array Stationary Array
6
Competition Overview Mission 1 Part 1 Operators Station BIA Thermal Vent Floating Array Stationary Array
7
Competition Overview Mission 1 Part 2 Operators Station BIA Thermal Vent Floating Array Stationary Array
8
Competition Overview Mission 2 Operators Station BIA Thermal Vent Floating Array Stationary Array
9
Competition Overview Mission 3 Operators Station BIA Thermal Vent Floating Array Stationary Array
10
Competition Overview Mission 4 Operators Station BIA Thermal Vent Floating Array Stationary Array
11
Technical Constraints NameDescription Operating Depth The ROV Must Operate at depths up to 3.2 meters Operating Power The ROV must operate from a 12.7V +/- 0.3V voltage source and draw less than 25 amps of current Maneuverability The ROV must maneuver effectively enough to make it competitive Video Capability The ROV must have a minimum of one camera with a 3 meter range to allow it to compete effectively Manipulator Arm The ROV must have a manipulator arm capable of lifting 2 Newtons
12
Operating Depth Sank pressure canister to approximately 3.2 meters
13
Operating Power MATE current limit is 25A With all components in operation, total current draw was less than 13A
14
Maneuverability Front and rear vertical motors work independently of one another
15
Maneuverability Horizontal motors work independently to allow for a tighter turning radius.
16
Video Capability Camera 1 gives view of end of arm 1 3 meters
17
Video Capability Camera 2 gives general view of space under ROV 2
18
PCB Schematic Design
19
PCB Board Layout
20
PCB Component Verification
21
PCB Actual PCB
22
PCB Continuity Testing
23
PCB Fully Populated PCB
24
Manipulator Arm 90 degrees of movement from left to right The claw will rotate. The claw will clamp closed and open again. Top of ROV
25
Manipulator Arm
38
Manipulator Arm Video
39
Packaging - Housing PVC Frame – Light weight and customizable PVC Pressure Canisters – Waterproof end cap for easy repairs Custom Paint Job
40
Packaging - Arm Manipulator Arm – Custom components – Higher manufacturing cost
41
Packaging – Motors Motor Shrouds – Maneuver faster – Safety
42
Packaging – Motors
43
Packaging - Interface USB Connected – Compatibility Easy Setup – Open source camera software – Xbox Controller
44
Parts List
47
References [1] S. W. Moore, H. Bohm, and V. Jensen. Underwater Robotics: Science Design & Fabrication. Monterey, Ca: Marine Advanced Technology Edu, 2010. Print (used for the physical design of the Rov) [2] Observer 3.1. (2013, Feb 7). [Online]. Available: http://www.allboatsavenue.com/mini-robot-sous-marin- observer-3-1-de-subsea-techhttp://www.allboatsavenue.com/mini-robot-sous-marin- observer-3-1-de-subsea-tech [3] Marine Advanced Technology Education (MATE) Center. [Online]. Available: http://www.marinetech.org/about/ http://www.marinetech.org/about/ [4] Arduino. [Online]. Available: www.arduino.ccwww.arduino.cc [5] Circuits At Home. [Online]. Available: www.circuitsathome.comwww.circuitsathome.com [6] Sparkfun. [Online]. Available: www.sparkfun.comwww.sparkfun.com
48
MSU ROV Team Mid Semester Presentation Senior Design 1 February 21, 2013
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.