Presentation is loading. Please wait.

Presentation is loading. Please wait.

CSCI 6442 Entity-Relation Data Modeling

Similar presentations


Presentation on theme: "CSCI 6442 Entity-Relation Data Modeling"— Presentation transcript:

1 CSCI 6442 Entity-Relation Data Modeling
Copyright 2016, David C. Roberts, all rights reserved

2 Agenda Data Modeling Natural and Generated Keys Weak Entity Types
Patterns in Data Models

3 Relational Database Remember that a relational database is a collection of time-varying, independent relations Each relation models some entity type in the problem space (outside the computer) There is a close correspondence between entity types and relations

4 Data Modeling We can say that the relational database models the real-world problem So construction of a relational database becomes the selection of the entity types to put into the data model Sometimes entity type selection is simple; other times entity types are not apparent and selection can be difficult

5 Notation for Data Models
Because a relational database is comprised of independent tables, how do you deal with relationships during design? Chen developed the entity-relation data model, which considered entity types and their relationships He expected that a new type of database system would evolve, directly implementing the E-R data model Instead, the E-R notation was found to be an excellent tool for relational database design and the relational approach has taken over Since then, popular automated tools have tended to change the notation for easier computer printing

6 Chen’s Notation We will use Chen’s notation here for two reasons:
It separates the notion of a relationship from the notion of an entity type Conversion of the design into relational tables occurs at the end of the design process, so the difference between the data model and physical design is clear In your own work, once you are familiar with the concepts, you will be able to use the popular “crow’s foot” notation used by modern data modeling tools

7 Entities Strong Entity—has independent existence
Weak Entity—exists only when the entity it depends on exists Employee Question: What are some Examples of strong entity types? Weak entity types? Dependent

8 Examples of Entity Instances
An instance of an entity is a specific occurrence of an entity type: Bill Gates is an Employee of Microsoft Spam is a Product Greenpeace is an Organization Flour is an ingredient

9 Attributes Attributes are indicated inside ovals; identifier attributes are underlined. For complex diagrams, attributes are often omitted EMPNO Employee JOB Question: Which attributes in this diagram should be underlined? SALARY

10 Examples of Attributes
An attribute is a characteristic of an entity type: EmployeeID Social Security Number First Name Last Name Street Address City State ZipCode Date Hired Health Benefits Plan

11 Multi-Valued Attribute
A multi-valued attribute is shown as a double line EMPNO Employee JOB SALARY Question: What do Robert’s Rules say about Telephone? Question: Which attribute should have a double underline? TELEPHONE

12 Relationship A relationship is an association between two entity types, for example: A CUSTOMER places a CUSTOMER ORDER An EMPLOYEE takes a CUSTOMER ORDER A STUDENT enrolls in a COURSE A COURSE is taught by a FACULTY MEMBER Some say that entity types should be nouns and relationships should be verbs

13 Relationship EMPLOYEE WORKS FOR DEPARTMENT

14 Categorizing Relationships
Number of entity types participating: Unary: one Binary: two Ternary: three Existence of related instances(a.k.a. optionality): Mandatory Optional Cardinality of the relationship: One-many Many-many One-one

15 One-to-One Relationships
Usually the only time a one-to-one relationship is used is for a dependent entity. Otherwise, usually if there is a one-to-one relationship, careful consideration will show that there is just one entity type. EMPLOYEE 1 HAS 1 SPOUSE

16 Relationship And Cardinality
A relationship is an association between two or more entity types, drawn as a diamond. Relationships may be one-to-many, many-to- many or one-to-one DEPARTMENT STUDENT EMPLOYEE 1 1 M 1 HAS GRADE HAS N N 1 EMPLOYEE COURSE COMPANY CAR

17 Recursive Relationship
Recursive relationship is how a repeated hierarchy is represented WORKS FOR Employee Question: How else can this hierarchy be represented?

18 Relationship of Higher Degree
A ternary relationship, also said to have degree 3. STUDENT COURSENO N N TEACHER REG GRADE N COURSE

19 Optionality of Participation
DEPARTMENT STUDENT EMPLOYEE 1 N 1 HAS GRADE HAS N N 1 EMPLOYEE COURSE COMPANY CAR

20 Supertypes It can be useful to consider a supertype that includes several entity types as subtypes Supertypes can be Complete: every instance of the supertype is one of the subtypes Distinct: no single entity type can be a member of two subtypes

21 Notation Chen’s notation for supertypes and subtypes is cumbersome, so let’s use “crow’s-foot” notation A supertype is shown as a box surrounding the boxes for all the subtypes Relationship lines end on the supertype or the subtype boundaries as appropriate

22 Subtypes Subtypes can be either mutually exclusive (disjoint) or overlapping (inclusive). For a mutually exclusive category, an entity instance may be in only one subtype. For an overlapping category, an entity instance may be in two or more subtypes. The completeness constraint: all instances of a subtype must be represented in the supertype.

23 Example Subtypes PARTY Question: How would this be implemented as database tables? PERSON EMPLOYEE PARTY(PARTYID) PERSON(PARTYID,FNAME,MI,LNAME,DOB,POB) EMP(PARTYID,EMPID,DHIRED,SAL,JOB,DEPTNO) APP(PARTYID,DAPPLIED,STATUS) ORG(PARTYID,ORGNAME,ORGCITY,ORGSTATE,ORGZIP) CUST(PARTYID,CUSTID,DOFO,DOLO,LYVOL) SUPP(PARTYID,SUPPID,DOFO,DOLO,LYVOL) APPLICANT ORGANIZATION CUSTOMER SUPPLIER

24 Why Use Subtypes and Supertypes Like This?
Relationships are simplified The relationship can take place at the highest possible level in the hierarchy Fewer relationship tables are generally required Programming can be simplified All subtypes can be processed in the same way For example, write a check to an organization or a check to a supplier with the same code

25 Relationships DEPT WORKS IN BELONGS TO

26 Converting an ERD to Relational
Recall that when we did an ERD we were not designing tables, we were defining the problem in terms of entity types and relationships Now the design must be translated into relational tables Question: What are the symbols on the ERD that will become tables in the relational database?

27 Converting to Relational
Every entity type becomes a table For one-many relationships, put the identifier of the one with each of the many For one-one relationships, put the identifier of each with the other For many-many relationships, identify an entity type that connects them, and make it a table, using the primary key of both partners as a composite primary key

28 Conversion We see that every rectangle in the ERD will become a table in the relational database Some of the diamonds will become tables and some will not

29 Students and Courses Year Semester Grade Registration Student Course
Name Credits StudentID Number Grad YR Location

30 What About Subtypes? Each subtype and supertype is a separate table
Common attributes are stored with the highest level entity that shares them The root level supertype may have many attributes, or it may have only a key

31 OK, How Do I Do It? You will have your own ideas about how to proceed, but here’s an idea: Enumerate things in the problem space to keep track of (these are entity types) Enumerate what to keep track of about each thing (these are attributes) Enumerate relationships to keep track of Draw a draft ERD and review it for difficulty of doing the operations that are needed Review it for possible simplifications and alternative approaches

32 Here’s Another Approach
List all the facts you want to keep track of and their subjects Group your list by subject Consider each subject as an entity type, the facts about it as attributes Be sure to use separate entity types for repeated groups of facts Now draw your draft ERD and review it for difficulty of programming the operations that are needed Review it for simplifications and alternate approaches Thanks to Bill Kent for fact-based data analysis

33 Natural and Generated Keys

34 Definitions Natural key—a key that occurs in the data, that uniquely identifies rows. AKA candidate key. Generated key—a key that is generated at the time data is inserted into the database, that did not occur naturally

35 Question: does 3NF require that there be a single-attribute primary key?
Postulate: In a normalized data model, every row has a natural key Proof: 3NF requires that the value of every attribute be ffd by the primary key. By construction, primary keys uniquely identify instances and are unique. Therefore, each row has a different value for the primary key and is hence unique. Result: There is no reason to add a primary key to normalized data in order to make rows unique. They already are.

36 Generated Keys In some organizations, programmers have the idea that a generated key should be included in every relation, a misunderstanding of the relational approach. Often they will say “it’s to make rows unique” or “to provide a unique identifier.” This is terribly wrong! That’s a fine idea for an Excel spreadsheet but it shows a misunderstanding of what a relation is and what a tuple is. Tuples are naturally unique because each one corresponds to a distinct instance of an entity type in the real world. You don’t have to add anything to make them unique. If your database design is correct, you have unique rows even if you haven’t added a key to each row.

37 Making the Point Again, Again
Each row corresponds to an occurrence of a entity instance Each entity instance is unique; that’s why it is tracked as an instance Therefore, every row is different from every other row without adding anything to it Question: what if entity instances are not unique? How do we track them in a database?

38 Claim That’s Made for Generated Keys
Some think that generated keys allow more flexibility For example, in our EMP table, can we allow a person’s name to change? If we use a generated key, then the name can change and all other associated data will still be associated with the correct person What do you think of this statement? Can you use telephone number as the primary key? Why or why not? Can primary keys ever change in value? And what if the primary key is a foreign key in another table?

39 SQL and Primary Keys SQL allows primary keys to change; they are just a value that changes What about foreign keys? Can they change? In the CREATE TABLE statement, you state ON UPDATE or ON DELETE CASCADE, RESTRICT, NO ACTION, SET NULL or SET DEFAULT. For ON DELETE, DELETE can also be an action

40 Limitation of SQL Database Systems
In general, the primary key is not allowed to have null value—which is fine But a composite primary key is not allowed to have any part that is null The composite primary key limitation does not correspond to reality, can force us to use a generated key

41 Benefits of Natural Keys:
Assures proper attention to the data model, because unique values must be identified Tables have fewer columns Avoid storage of meaningless data The key value itself may have value to an application, hence will avoid retrieval of the row itself

42 When to Use Generated Keys
Sometimes you have a compound key that is very long Lots of queries will be very complicated and tables with foreign keys will copy most of another table As a guideline, the only time to use a generated key is when the natural key has at least three columns A special case of this rule is the case where the whole row would have to be a composite key without a generated key Example: internal person

43 Another Case for Generated Keys
Suppose we don’t have any kind of single or composite identifier that is always present Database systems generally don’t allow for part of a designated composite key to be null Even though it’s legitimate, because of database system limitations, you may have to use generated keys if you don’t have a common identifier without any null parts, ever

44 Example ID Card for entry to GWU buildings
Students may not have SSN but all have student number Contractors may not have GWU employee # but all have SSN

45 The Bottom Line Don’t use generated keys. Ever. Unless you must!

46 Weak Entity Types CSCI 6442

47 Most entity types are strong entity types, that exist independently from other entity types
A strong entity type always has a unique identifier that distinguishes each occurrence of that entity type A weak entity type needs another entity type for its identifier The entity type on which the weak entity type depends is called the identifying owner

48 Example Employeeee Dependent belongs

49 The identifying relationship is the relationship between a weak entity type and its owner
The weak entity identifier is its partial identifier combined with that of its owner.

50 Types of Weak Entities Existence-dependent entities—existence depends on existence of another (strong) entity Associative entities—a many-many relationship Subtype entities—entity type that inherits its identity from a supertype

51 Example Student Course registers Party Employee Company

52 SOME Patterns in Data Models
CSCI 242

53 LEGEND OPTIONAL ZERO OR MORE ONE MANY ONE ONE OR MORE ONE MANY

54 General association

55 TYPE Bus Bus Type

56 Aggregation/containment
“Many” cardinality always on the same side. This pattern represents an instance hierarchy. Company Division Department Also: parts explosion, geographic hierarchy

57 intersection 3 entities, two 1-M relationships. “Many” cardinality on the inside. Employee Capability Skill Also: students and teachers, students and courses, parts and suppliers

58 Differing aspects of same
3 entities, two 1-M relationships. “Many” cardinality on the outside. Address Student Phone Also: employees and dependents, employees and college degrees, owners and cars

59 Subordinate or subtype
“be” labels indicate that entities are two different relationships of the same concept. Full-Time Employee Part-Time Employee Employee be be be be

60 Subordinates across Subordinate descriptor always on the same side of the relationship, for an n-level inheritance hierarchy. Full-Time Employee University Person Employee be be be be

61 Reflexive association
manages Employee is managed by

62 inventory Classes of inventory: 1. Items tracked individually
tend to have individual identifiers tend to have differences between individuals 2 Items tracked in aggregate tend to not have identifiers only quantities are tracked Examples: 1. people, cars, houses, taxpayers, expensive art works 2 pencils, coal, gasoline, water, paint


Download ppt "CSCI 6442 Entity-Relation Data Modeling"

Similar presentations


Ads by Google