Download presentation
Presentation is loading. Please wait.
Published byFrederick Snow Modified over 9 years ago
2
G(r) r – r e r – r e is the vibrational coordinate rere
3
Vibrational Energy Levels Harmonic Oscillator G(v) = ω (v + ½) cm -1
4
Equidistantly spaced levels G(r) r
5
This is a quite unrealistic curve G(r) r
6
G(r) r H + H
7
G(r) r H + H Dissociation
8
G(r) r H + H Dissociation Chemical Bond Energies
9
G(r) r H + H Dissociation Chemical Bond Energies DeDe
10
G(r) r H + H Dissociation Chemical Bond Energies D e is called the Equilibrium Dissociation Energy Nuclear Energies DeDe
11
G(r) r H + H Dissociation Chemical Bond Energies D e is called the Equilibrium Dissociation Energy Nuclear Energies DeDe
12
G(r) r H + H Dissociation
13
G(r) r H + H Dissociation
14
G(r) r H + H Dissociation 0
15
G(r) r H + H Dissociation 1 0
16
G(r) r H + H Dissociation 2 1 0
17
G(r) r H + H Dissociation v=3 2 1 0
18
G(r) r H + H Dissociation v=3 2 1 0
19
G(r) r H + H Dissociation v=3 2 1 0
20
G(r) r H + H Dissociation v=3 2 1 0
21
G(r) r H + H Dissociation v=3 2 1 0
22
G(r) r H + H Dissociation v=3 2 1 0
23
G(r) r H + H Dissociation v=3 2 1 0
24
G(r) r H + H Dissociation v=3 2 1 0
26
H + H Nuclear Energies Chemical Energies E(r) r 0 Rotational levels
27
H + H Nuclear Energies Chemical Energies E(r) r 0 Morse Potential V(r) = D e (1-e -a(r-re) ) 2 Anharmonicity G(v) = ω(v+ ½) - α ω 2 (v+ ½) 2 α = ¼D e -4
28
G(r) r – r e rere ½ ω 1½ ω 2½ ω 3½ ω 4½ ω 5½ ω 6½ ω Notice that the energy levels are equidistantly space by ω v = 6 v = 5 v = 4 v = 3 v = 2 v = 1 v = 0
29
Harry Kroto 2004
30
H + H Nuclear Energies Chemical Energies r E(r) v=3 2 1 0 Harry Kroto 2004
31
G(r) r H + H Dissociation Chemical Bond Energies D e is called the Equilibrium Dissociation Energy Nuclear Energies DeDe
32
Harry Kroto 2004
35
E(r) r
36
- gif - www.files.chem.vt.edu/chem-ed/quantum/graphic...
37
Harry Kroto 2004
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.